Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=2^4+2^7+2^n=144+2^n\)
Nếu \(n\) lẻ \(\Rightarrow n=2k+1\Rightarrow A=144+2.4^k\equiv2\left(mod3\right)\Rightarrow A\) không thể là SCP (loại)
\(\Rightarrow n\) chẵn \(\Rightarrow n=2k\)
\(\Rightarrow144+2^{2k}=m^2\)
\(\Rightarrow144=m^2-\left(2^k\right)^2\)
\(\Rightarrow144=\left(m-2^k\right)\left(m+2^k\right)\)
Giải pt ước số cơ bản này ta được đúng 1 nghiệm thỏa mãn là \(2^k=16\Rightarrow k=4\Rightarrow n=8\)
a+b=25=>a=25-b
ab=156<=>b(25-b)=156
<=>25b-b2-156=0 <=>-(b-12)(b-13)=0<=>b=12 hoặc b=13
thay vào tìm nốt a
Mình biết đáp án là 12 và 13 nhưng không biết cách giải thế nào
Coi số lớn là 2 phần và 31 đơn vị và số bé là 1 phần :
Số lớn là : ( 367 - 31) : ( 1 + 2 ) x 2 + 31 = 255
Số bé là : 367 - 255 = 112