\(>\)100 .

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2021

Ta có: $1+2+3+...+n=\dfrac{n(n+1)}{2}$

Nên $1+2+3+...+n>0⇔\dfrac{n(n+1)}{2}>100$

$⇔n(n+1)>200$

với $n=1;2;3;4;5;6;7;8;9;10;11;12;13$ khi thay vào ta thấy $n(n+1)<200$

nên loại 

với $n=14⇒n(n+1)=14.15=210>200$ chọn

Vậy số tự nhiên n nhỏ nhất là 14 thỏa mãn đề

20 tháng 7 2019

\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)

\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)

Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)

Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890

Vậy n=890

20 tháng 7 2019

Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)

Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)

\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)

\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)

\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)

\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)

\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)

Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8

Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 => 

=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3

4 tháng 6 2018

b)\(C=\frac{5x-19}{x-4}=\frac{5x-20+1}{x-4}=\frac{5\left(x-4\right)+1}{x-4}=5+\frac{1}{x-4}\)

Để C đạt giá trị nhỏ nhất => 1/x-5 phải đạt giá trị nhỏ nhất

=> 1/x-5=-1

=>x-5=-1

=>x=4

Giá trị nhỏ nhất của C là : 5 - 1 = 4 <=> x = 4

10 tháng 9 2019

1b.

Cach 1

Ta co:

\(M=\frac{x^2-2x+2015}{x^2}\)

\(\Leftrightarrow\left(M-1\right)x^2+2x-2015=0\)

Xet \(M=1\)suy ra:\(x=\frac{2015}{2}\)

Xet \(M\ne1\)

\(\Leftrightarrow\Delta^`\ge0\)

\(1+\left(M-1\right).2015\ge0\)

\(\Leftrightarrow2015M-2014\ge0\)

\(\Leftrightarrow M\ge\frac{2014}{2015}\)

Dau '=' xay ra khi \(x=-\frac{1}{M-1}\Leftrightarrow x=2015\)

Vay \(M_{min}=\frac{2014}{2015}\)khi \(x=2015\)

Cach 2

\(M=\frac{x^2-2x+2015}{x^2}=\frac{2014x^2+\left(x-2015\right)^2}{2015x^2}=\frac{2014}{2015}+\frac{\left(x-2015\right)^2}{2015x^2}\ge\frac{2014}{2015}\)

Dau '=' xay ra khi \(x=2015\)

Vay \(M_{min}=\frac{2014}{2015}\)khi \(x=2015\)

Bài 1: 

Để \(\dfrac{n^2+7}{n+7}\) là số tự nhiên thì \(\left\{{}\begin{matrix}n^2+7⋮n+7\\n>-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n^2-49+56⋮n+7\\n>-7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+7\in\left\{1;-1;2;-2;4;-4;7;-7;8;-8;14;-14;28;-28;56;-56\right\}\\n>-7\end{matrix}\right.\)

\(\Leftrightarrow n\in\left\{-6;-5;-3;0;1;7;21;49\right\}\)