Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n + 1 \(⋮\)8 \(\Rightarrow\)n + 1 + 64 \(⋮\)8 \(\Leftrightarrow\)n + 65 \(⋮\)8 ( 1 )
n + 3 \(⋮\)31 \(\Rightarrow\)n + 3 + 62 \(⋮\)31 \(\Leftrightarrow\)n + 65 \(⋮\)31 ( 2 )
Từ ( 1 ) và ( 2 ) : n + 65 \(⋮\)BCNN ( 8,13 ) \(\Rightarrow\)n + 65 \(⋮\)248 \(\Rightarrow\)n = 248k - 65 ( k thuộc N )
với k = 3 thì n = 729
với k = 4 thì n = 927
với k = 5 thì n = 1175
Để n là số lớn nhất có ba chữ số thì n = 927
n + 1 \(⋮\)8
\(\Rightarrow\)n + 1 + 64 = n + 65 \(⋮\)8 ( 1 )
n + 3 \(⋮\)31
\(\Rightarrow\)n + 3 + 62 = n + 65 \(⋮\)31 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)n + 65 \(⋮\)BCNN ( 8,13 ) = 248
\(\Rightarrow\)n = 248k - 65
với k = 3 thì n = 679
với k = 4 thì n = 927
với k = 5 thì n = 1175
Mà n là số lớn nhất có ba chữ số nên ta chọn n = 927
n + 1 ⋮⋮8
⇒⇒n + 1 + 64 = n + 65 ⋮⋮8 ( 1 )
n + 3 ⋮⋮31
⇒⇒n + 3 + 62 = n + 65 ⋮⋮31 ( 2 )
Từ ( 1 ) và ( 2 ) ⇒⇒n + 65 ⋮⋮BCNN ( 8,13 ) = 248
⇒⇒n = 248k - 65
với k = 3 thì n = 679
với k = 4 thì n = 927
với k = 5 thì n = 1175
Mà n là số lớn nhất có ba chữ số=> n = 927
Có \(\overline{abcd}=1000a+100b+10c+d\)
\(=\left(1000+100+10+1\right)\left(a+b+c+d\right)\)
\(=1111.\left(a+b+c+d\right)\)
Do \(1111⋮11\)
\(\Rightarrow1111.\left(a+b+c+d\right)⋮11\)
\(\Rightarrow\overline{abcd}⋮11\)
Bài vô lí quá bn.
Ví dụ: 1112:11=101(dư 1) (ko chia hết cho 6)
Mk nghĩ bài này phải thêm đk j nx.
Xem lại đi nhá
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
Theo bài ra ta có:
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
gọi số tự nhiên cần tìm là n ( n thuộc N ; n nhỏ hơn hoặc = 999)
n chia 8 dư 7 => ( n+1 ) chia hết cho 8
n chia 31 dư 28 => ( n+3) chia hết cho 31
ta có ( n+1 ) + 64 chia hết cho 8 = ( n+3 ) + 62 chia hết cho 31
vậy ( n+65 )chia hết cho 31 và 8
mà 31,8 = 1
=> n+65 chia hết cho 248
vì n nhỏ hơ hoặc = 999 nên ( n+65 ) nhỏ hơn hoặc = 1064
để n là số tự nhiên lớn nhát thỏa mãn điều kiện thì cũng phải là stn lớn nhất thỏa mãn => n+65 / 248 = 4
=.> n= 927
vậy số tự nhiên cần tìm là 927
ta co n=8k + 7
n+ 65 = 8k + 7+65 = 8k+72 = 8(k+9)
n= 31l+28
n+65 = 31l+28+65 = 31l + 93 = 31(k+3)
do do n+65 chia het cho 8 va 31
suy ra n+65 thuoc 248, 496, 744, 992,...
vi n lon nhat co 3 chu so nen n+65 = 992
suy ra n= 992-65 = 927