Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : n chia 8 dư 7 và chia 31 dư 28, suy ra:
n chia 8 dư 7 => (n+1) ⋮ 8
n chia 31 dư 28 => (n+3) ⋮ 31
Ta có: ( n+ 1) + 64 ⋮ 8 và (n+3) + 62 ⋮ 31
=> (n+65) ⋮ 31 và 8
Mà (31,8) =1
=> (n+65) ⋮ 31.8=248
Vì n ≤999 nên (n+65) ≤ 999+65 =1064
=> \(\dfrac{n+65}{248}\text{≤4,29}\)
Để n là số tự nhiên lớn nhất thoả mãn điều kiện thì \(\dfrac{n+65}{248}\) cũng phải là số tự nhiên lớn nhất thỏa mãn => \(\dfrac{n+65}{248}\)=4
=> n = 4.248+65 = 927
Vậy số tự nhiên n cần tìm là : 927
chia 11 dư 5 ⇔ a = 11m + 5 ⇒ a + 6 = (11m + 5 )+ 6 = 11m + 11 = 11.(m + 1) chia hết cho 11. (m ∈ N)
Vì 77 chia hết cho 11 nên (a + 6) + 77 cũng chia hết cho 11 ⇔ a + 83 chia hết cho 11. (1)
a chia 13 dư 8 ⇔ a = 13n + 8 ⇒ a + 5 = (13n + 8) + 5 = 13n + 13 = 13.(n + 1) chia hết cho 11. (n ∈ N)
Vì 78 chia hết cho 13 nên (a + 5) + 78 cũng chia hết cho 13 ⇔ a + 83 chia hết cho 13. (2)
Từ (1) và (2) suy ra a + 83 chia hết cho BCNN(11; 13) ⇔ a + 83 chia hết cho 143 ⇒ a = 143k - 83 (k ∈ N*)
Để a nhỏ nhất có 3 chữ số ta chọn k = 2. Khi đó a = 203