![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
P=(n^4+n^3)+(n^3+n^2)+(n^2+n)+(n+1)
P=n^3(n+1)+n^2(n+1)+n(n+1)+(n+1)
P=(n^3+n^2+n+1)(n+1)
P=[(n^3+n^2)+(n+1)](n+1)
P=[n^2(n+1)+(n+1)](n+1)
P=[(n^2+1)(n+1)](n+1)
P=(n^2+1)(n+1)^2
Mà P là số chính phương , (n+1)^2 là số chính phương
=> n^2+1 là số chính phương
=> n^2+1=a^2(a là số nguyên)
=> n^2-a^2=-1
=>(n+a)(n-a)=-1
mà n là số tự nhiên, a là số nguyên=> n+a,n-a là số nguyên
=> n+a=-1 ; n-a=1 hoặc n+a=1; n-a=-1
=> n=0; a=-1 hoặc n=0; a=1
Vậy n=0
![](https://rs.olm.vn/images/avt/0.png?1311)
A=3^(2n+3)+2(4n+1)chia hết cho 25
có thể dùng pp như phần a để giải phần này
tôi dùng 1 phương pháp khác cho phong phú và pp nay co thể ap dụng cho phần a)
Pp lựa chọn phần dư:
A=3^(2n+3)+2^(4n+1)
gọi 3^(2n+3)=B,2^(4n+1)=C
n=1 B=3^(2+3)=3^5=243 chia 25 dư 18
C=2^5=32 chia 25 dư 7
B+C chia 25 dư bằng 18+7chia 25 dư 0
giả sử n=k là số đầu tiên thỏa mãn A=3^(2n+3)+2^(4n+1) chia hết
cho 25 ta chứng minh với n=k+2 số A cũng chia hết cho 25
Gọi A(k),B(k), C(k) là giá trị A, B, C ứng với n=k
khi n=k gọi b là phần dư của B(k) cho 25, c là phần dư của C(k) cho 25
n=k số A =B(k)+C(k) chia hết cho 25 nên b+c chia hết cho 25
với k+2 thì B(k+2)=B(k)*9=81B(k), C(k+2)=C(k)*2*8=256C(k)
A(k+2)=81(B(k)+256C(k)=75B(k)+6B(k)+250...
A(k+2)=75C(k)+250C(k)+6(B(k)+C(k))
hai số hạng đầu chứa các nhân tử chia hết cho 25 nên chúng chia hết cho 25
còn B(k)+C(k) chia hết cho 25 từ đó A(k+2) chia hết cho 25
ta CM đc n=1 A chia hết cho 25 và nếu với k số A chia hết cho 25 thi với
k+2 số A cũng chia hết cho 25 vậy với mọi số lẻ n thì A chia hết cho 25
:3
Trả lời
A=3^(2n+3)+2(4n+1)chia hết cho 25
có thể dùng pp như phần a để giải phần này
tôi dùng 1 phương pháp khác cho phong phú và pp nay co thể ap dụng cho phần a)
Pp lựa chọn phần dư:
A=3^(2n+3)+2^(4n+1)
gọi 3^(2n+3)=B,2^(4n+1)=C
n=1 B=3^(2+3)=3^5=243 chia 25 dư 18
C=2^5=32 chia 25 dư 7
B+C chia 25 dư bằng 18+7chia 25 dư 0
giả sử n=k là số đầu tiên thỏa mãn A=3^(2n+3)+2^(4n+1) chia hết
cho 25 ta chứng minh với n=k+2 số A cũng chia hết cho 25
Gọi A(k),B(k), C(k) là giá trị A, B, C ứng với n=k
khi n=k gọi b là phần dư của B(k) cho 25, c là phần dư của C(k) cho 25
n=k số A =B(k)+C(k) chia hết cho 25 nên b+c chia hết cho 25
với k+2 thì B(k+2)=B(k)*9=81B(k), C(k+2)=C(k)*2*8=256C(k)
A(k+2)=81(B(k)+256C(k)=75B(k)+6B(k)+250...
A(k+2)=75C(k)+250C(k)+6(B(k)+C(k))
hai số hạng đầu chứa các nhân tử chia hết cho 25 nên chúng chia hết cho 25
còn B(k)+C(k) chia hết cho 25 từ đó A(k+2) chia hết cho 25
ta CM đc n=1 A chia hết cho 25 và nếu với k số A chia hết cho 25 thi với
k+2 số A cũng chia hết cho 25 vậy với mọi số lẻ n thì A chia hết cho 25
![](https://rs.olm.vn/images/avt/0.png?1311)
A = (2n)^3−3n+1
⇔ A = (2n)^3−2n−n+1
⇔ A = 2n(n^2−1)−(n−1)
⇔ A = 2n(n−1)(n+1)−(n−1)
⇔ A = (2n^2+2n−1)(n−1)
Vì A là số nguyên tố nên n - 1 = 1
⇒ n = 2
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Để \(\dfrac{n^2+7}{n+7}\) là số tự nhiên thì \(\left\{{}\begin{matrix}n^2+7⋮n+7\\n>-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n^2-49+56⋮n+7\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+7\in\left\{1;-1;2;-2;4;-4;7;-7;8;-8;14;-14;28;-28;56;-56\right\}\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow n\in\left\{-6;-5;-3;0;1;7;21;49\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Với n = 0 => A = 03 - 2.02 + 2.0 - 4 = -4 ko là số nguyên tố
n = 1 => A = 13 - 2.12 + 2.1 - 4 = 1 - 2 + 2 - 4 = -3 ko là số nguyên tố
n = 2 => A = 23 - 2.22 + 2.2 - 4 = 0 ko là số nguyên tố
n = 3 => A = 33 - 2.32 + 2.3 - 4 = 11 là số nguyên tố
Với n \(\ge\)4 => A = n3 - 2n2 + 2n - 4 = n2(n - 2) + 2(n - 2) = (n2 + 2)(n - 2) có nhiều hơn 2 ước
=> A là hợp số
Vậy Với n = 3 thì A là số nguyên tố