\(n^3-2n^2+3\)   là hợp số

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2017

ko bít

13 tháng 11 2017

ko biết nói làm j

10 tháng 4 2019

P=(n^4+n^3)+(n^3+n^2)+(n^2+n)+(n+1)

P=n^3(n+1)+n^2(n+1)+n(n+1)+(n+1)

P=(n^3+n^2+n+1)(n+1)

P=[(n^3+n^2)+(n+1)](n+1)

P=[n^2(n+1)+(n+1)](n+1)

P=[(n^2+1)(n+1)](n+1)

P=(n^2+1)(n+1)^2

Mà P là số chính phương , (n+1)^2 là số chính phương

=> n^2+1 là số chính phương

=> n^2+1=a^2(a là số nguyên)

=> n^2-a^2=-1

=>(n+a)(n-a)=-1

mà n là số tự nhiên, a là số nguyên=> n+a,n-a là số nguyên

=> n+a=-1 ; n-a=1 hoặc n+a=1; n-a=-1

=> n=0; a=-1 hoặc n=0; a=1

Vậy n=0

19 tháng 3 2018

A=3^(2n+3)+2(4n+1)chia hết cho 25 
có thể dùng pp như phần a để giải phần này 
tôi dùng 1 phương pháp khác cho phong phú và pp nay co thể ap dụng cho phần a) 
Pp lựa chọn phần dư: 
A=3^(2n+3)+2^(4n+1) 
gọi 3^(2n+3)=B,2^(4n+1)=C 
n=1 B=3^(2+3)=3^5=243 chia 25 dư 18 
C=2^5=32 chia 25 dư 7 
B+C chia 25 dư bằng 18+7chia 25 dư 0 

giả sử n=k là số đầu tiên thỏa mãn A=3^(2n+3)+2^(4n+1) chia hết 
cho 25 ta chứng minh với n=k+2 số A cũng chia hết cho 25 
Gọi A(k),B(k), C(k) là giá trị A, B, C ứng với n=k 
khi n=k gọi b là phần dư của B(k) cho 25, c là phần dư của C(k) cho 25 
n=k số A =B(k)+C(k) chia hết cho 25 nên b+c chia hết cho 25 
với k+2 thì B(k+2)=B(k)*9=81B(k), C(k+2)=C(k)*2*8=256C(k) 
A(k+2)=81(B(k)+256C(k)=75B(k)+6B(k)+250... 
A(k+2)=75C(k)+250C(k)+6(B(k)+C(k)) 
hai số hạng đầu chứa các nhân tử chia hết cho 25 nên chúng chia hết cho 25 
còn B(k)+C(k) chia hết cho 25 từ đó A(k+2) chia hết cho 25 
ta CM đc n=1 A chia hết cho 25 và nếu với k số A chia hết cho 25 thi với 
k+2 số A cũng chia hết cho 25 vậy với mọi số lẻ n thì A chia hết cho 25

:3

25 tháng 3 2018

Trả lời

A=3^(2n+3)+2(4n+1)chia hết cho 25 
có thể dùng pp như phần a để giải phần này 
tôi dùng 1 phương pháp khác cho phong phú và pp nay co thể ap dụng cho phần a) 
Pp lựa chọn phần dư: 
A=3^(2n+3)+2^(4n+1) 
gọi 3^(2n+3)=B,2^(4n+1)=C 
n=1 B=3^(2+3)=3^5=243 chia 25 dư 18 
C=2^5=32 chia 25 dư 7 
B+C chia 25 dư bằng 18+7chia 25 dư 0 

giả sử n=k là số đầu tiên thỏa mãn A=3^(2n+3)+2^(4n+1) chia hết 
cho 25 ta chứng minh với n=k+2 số A cũng chia hết cho 25 
Gọi A(k),B(k), C(k) là giá trị A, B, C ứng với n=k 
khi n=k gọi b là phần dư của B(k) cho 25, c là phần dư của C(k) cho 25 
n=k số A =B(k)+C(k) chia hết cho 25 nên b+c chia hết cho 25 
với k+2 thì B(k+2)=B(k)*9=81B(k), C(k+2)=C(k)*2*8=256C(k) 
A(k+2)=81(B(k)+256C(k)=75B(k)+6B(k)+250... 
A(k+2)=75C(k)+250C(k)+6(B(k)+C(k)) 
hai số hạng đầu chứa các nhân tử chia hết cho 25 nên chúng chia hết cho 25 
còn B(k)+C(k) chia hết cho 25 từ đó A(k+2) chia hết cho 25 
ta CM đc n=1 A chia hết cho 25 và nếu với k số A chia hết cho 25 thi với 
k+2 số A cũng chia hết cho 25 vậy với mọi số lẻ n thì A chia hết cho 25

A = (2n)^3−3n+1

 A = (2n)^3−2n−n+1

 A = 2n(n^2−1)−(n−1)

 A = 2n(n−1)(n+1)−(n−1)

 A = (2n^2+2n−1)(n−1)

Vì A là số nguyên tố nên n - 1 = 1

 n = 2

Bài 1: 

Để \(\dfrac{n^2+7}{n+7}\) là số tự nhiên thì \(\left\{{}\begin{matrix}n^2+7⋮n+7\\n>-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n^2-49+56⋮n+7\\n>-7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+7\in\left\{1;-1;2;-2;4;-4;7;-7;8;-8;14;-14;28;-28;56;-56\right\}\\n>-7\end{matrix}\right.\)

\(\Leftrightarrow n\in\left\{-6;-5;-3;0;1;7;21;49\right\}\)

17 tháng 8 2020

Với n = 0 => A = 03 - 2.02 + 2.0 - 4 = -4 ko là số nguyên tố

 n = 1 => A = 13 - 2.12 + 2.1 - 4 = 1 - 2 + 2 - 4  = -3 ko là số nguyên tố

n = 2 => A = 23 - 2.22 + 2.2 - 4 = 0 ko là số nguyên tố

n = 3 => A = 33 - 2.32 + 2.3 - 4 = 11 là số nguyên tố

Với n \(\ge\)4 => A = n3 - 2n2 + 2n - 4 = n2(n - 2) + 2(n - 2) = (n2 + 2)(n - 2) có nhiều hơn 2 ước

=> A là hợp số

Vậy Với n = 3 thì A là số nguyên tố