Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Ta có:\(2020\equiv1\left(mod3\right)\Rightarrow2020^{2019}\equiv1\left(mod3\right)\Rightarrow2020^{2019}-1\equiv0\left(mod3\right)\)
Khi đó:\(\left(2020^{2019}+1\right)\cdot\left(2020^{2019}-1\right)\equiv0\left(mod3\right)\)
suy ra đpcm
b
\(n^5+96n=n\left(n^4+96\right)\)
Để \(n^5+96n\) là số nguyên tố thì:\(n^4+96=1\left(h\right)n=1\)
Do \(n^4+96>1\Rightarrow n=1\)
Thay vào ta thấy thỏa mãn
Vậy n=1
a, =2020^4038 -1
Vì \(2020 \equiv 1 \pmod{3}\)
->\(2020^(4038) \equiv 1 \pmod{3}\)
->2020^4038 -1 chia hết cho 3 -> dpcm
15.B
16.C
17.A
18.D
19.A
còn câu 20,21 mình sợ mình làm sai nên k ghi đáp án sorry bạn nha:(
a) D = 9 + 9² + 9³ + ... + 9²⁰²⁰
9D = 9² + 9³ + 9⁴ + ... + 9²⁰²¹
8D = 9D - D
= (9² + 9³ + 9⁴ + ... + 9²⁰²¹) - (9 + 9² + 9³ + ... + 9²⁰²⁰)
= 9²⁰²¹ - 9
D = (9²⁰²¹ - 9) : 8
b) Điều kiện: n ∈ ℕ và n ≠ 1
Do 125 chia n dư 5 nên n là ước của 125 - 5 = 120
Do 85 chia n dư 1 nên n là ước của 85 - 1 = 84
⇒ n ∈ ƯC(120; 84)
Ta có:
120 = 2³.3.5
84 = 2².3.7
⇒ ƯCLN(120; 84) = 2².3 = 12
⇒ n ∈ ƯC(120; 84) = Ư(12) = {2; 3; 4; 6; 12}
Vậy n ∈ {2; 3; 4; 6; 12}
dấu ''*'' là dấu nhân ạ
Lời giải:
$(n+1)+(n+2)+...+(n+2020)=2025.1010$
$\underbrace{n+n+...+n}_{2020}+(1+2+...+2020)=2025.1010$
$2020n+\frac{2020.2021}{2}=2025.1010$
$2020n+1010.2021=2025.1010$
$2020n=4.1010=4040$
$n=2$