Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n + 7 chia hết cho n + 2
n + 2 + 5 chia hết cho n + 2
=> 5 chia hết cho n + 2
=> n + 2 thuộc Ư(5) = {1 ; -1 ; 5 ; -5}
Ta có bảng sau :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
b) 9 - n chia hết cho n - 3
9 - n + 3 - 3 chia hết cho n - 3
9 - (n - 3) - 3 chia hết cho n - 3
6 - (n - 3) chia hết cho n - 3
=> 6 chia hết cho n - 3
=> n -3 thuộc Ư(o6) = {1 ; -1 ;2 ; -2 ;3 ; -3 ; 6 ; -6}
Còn lại giống a
c) n2 + n + 17 chia hết cho n + 1
n.(n + 1) + 17 chia hết cho n + 1
=> 17 chia hết cho n + 1
a/ nếu là tìm x thuộc Z thi giải như sau
n+5 chia hết cho n-2
mà n-2 chia hết cho n-2
=> [n+5] - [n-2] chia hết cho n-2
=> 7 chia hết cho n-2
Ta có bảng :
n-2 | -1 | -7 | 1 | 7 |
n | 1 | -5 | 3 | 9 |
Vậy ..........
b/
2n+1 chia hết cho n-5
n-5 chia hết cho n-5
=> 2.[n-5] chia hết cho n-5 => 2n -10 chia hết cho n-5
=> [2n+1] -[2n-10] chia hết cho n-5
=> 11 chia hết cho n-5
lập bảng t.tự câu a
c/ bạn xem lại đề
a)Ta có: n+4 chia hết cho n
Mà n chia hết cho n
=> 4 chia hết cho n
=> n thuộc Ư(4)
=> n thuộc {1;2;4;-1;-2;-4} (nếu bạn chưa học số âm thì bỏ 3 số cuối đi nha)
Vậy n thuộc {1;2;4;-1;-2;-4} (nếu bạn chưa học số âm thì bỏ 3 số cuối đi nha).
b)Ta có: n+5 chia hết cho n+1
=> (n+1) +4 chia hết cho n+1
Mà n+1 chia hết cho n+1
=> 4 chia hết cho n+1
=> n+1 thuộc Ư(4)
=> n+1 thuộc {1;2;4;-1;-2;-4} (nếu bạn chưa học số âm thì bỏ 3 số cuối)
=> n thuộc {0;1;3;-2;-3;-5} (nếu bạn chưa học số âm thì bỏ 3 số cuối)
Vậy n thuộc {0;1;3;-2;-3;-5} (nếu bạn chưa học số âm thì bỏ 3 số cuối)
\(a,\Rightarrow n+2+3⋮n+2\\ \Rightarrow n+2\inƯ\left(3\right)=\left\{1;3\right\}\\ \Rightarrow n=1\left(n\in N\right)\\ b,\Rightarrow n-2+7⋮n-2\\ \Rightarrow n-2\inƯ\left(7\right)=\left\{1;7\right\}\\ \Rightarrow n=5\left(n\in N\right)\\ c,\Rightarrow\left(n^2-n\right)+\left(3n-3\right)+3⋮n-1\\ \Rightarrow n\left(n-1\right)+3\left(n-1\right)+3⋮n-1\\ \Rightarrow n-1\inƯ\left(3\right)=\left\{1;3\right\}\\ \Rightarrow n\in\left\{2;4\right\}\)
a: \(\Leftrightarrow n+2=3\)
hay n=1