Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Ta có: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>2.(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2
a: \(\Leftrightarrow2n+1\in\left\{1;3;9\right\}\)
hay \(n\in\left\{0;1;4\right\}\)
\(a,\Leftrightarrow10n+14⋮2n+1\\ \Leftrightarrow5\left(2n+1\right)+9⋮2n+1\\ \Leftrightarrow2n+1\inƯ\left(9\right)=\left\{1;3;9\right\}\\ \Leftrightarrow n\in\left\{0;1;4\right\}\)
Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.
Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.
Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.
Vậy số tự nhiên n cần tìm là 3.
Bài 1
...=((2n-2):2+1):2=756
(2(n-1):2+1)=756×2
n-1+1=1512
n=1512
Ta có: n+3 chia hết cho n-1
mà: n-1 chia hết cho n-1
suy ra:[(n+3)-(n-1)]chia hết cho n-1
(n+3-n+1)chia hết cho n-1
4 chia hết cho n-1
suy ra n-1 thuộc Ư(4)
Ư(4)={1;2;4}
suy ra n-1 thuộc {1;2;4}
Ta có bảng sau:
n-1 1 2 4
n 2 3 5
Vậy n=2 hoặc n=3 hoặc n=5
a . n+4\(⋮\)n+1
\(\Rightarrow\)(n+1)+3 \(⋮\)n+1
mà n+1 \(⋮\)n+1 \(\Rightarrow\)3\(⋮\)n+1 hay n+1 \(\in\)ước của 3
ta có bảng sau:
n+1 | -1 | 1 | 3 | -3 |
n | -2 | 0 | 2 | -4 |
vậy n \(\in\)(-2;0;2;-4)
các bài sau cứ làm tưng tự nhé
a) Xét \(\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=1+\frac{3}{n+1}\)
Để p/s trên đạt giá trị nguyên thì (n+1) thuộc ư(3)
Bạn tự liệt kê
b) Đặt \(A=\left(n-1\right)\left(n^2+2n+3\right)\)
Vì A là số nguyên tô nên A chỉ có hai ước là 1 và chính nó
Suy ra các trường hợp : \(\begin{cases}n-1=1\\n^2+2n+3=A\end{cases}\) hoặc \(\begin{cases}n-1=A\\n^2+2n+3=1\end{cases}\)
Suy ra n = 2 thỏa mãn đề bài
a)n + 4 chia hết cho n + 1
=> n + 1 + 3 chia hết cho n + 1
Do n + 1 chia hết cho n + 1 => 3 chia hết cho n + 1
Mà \(n\in N\Rightarrow n+1\ge1\)
=> \(n+1\in\left\{1;3\right\}\)
=> \(n\in\left\{0;2\right\}\)
b) Ta đã biết số nguyên tố chỉ có 2 ước duy nhất là 1 và chính nó
Mà \(n^2+2n+3\ge3\) với mọi n là số tự nhiên
=> n - 1 = 1; n2 + 2n + 3 là số nguyên tố
=> n = 2
Thử lại ta thấy: n2 + 2n + 3 = 22 + 2.2 + 3 = 11, là số nguyên tố, thỏa mãn
Vậy n = 2