K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 8 2021

Đặt \(A=2^4+2^7+2^n=144+2^n\)

Nếu \(n\) lẻ \(\Rightarrow n=2k+1\Rightarrow A=144+2.4^k\equiv2\left(mod3\right)\Rightarrow A\) không thể là SCP (loại)

\(\Rightarrow n\) chẵn \(\Rightarrow n=2k\)

\(\Rightarrow144+2^{2k}=m^2\)

\(\Rightarrow144=m^2-\left(2^k\right)^2\)

\(\Rightarrow144=\left(m-2^k\right)\left(m+2^k\right)\)

Giải pt ước số cơ bản này ta được đúng 1 nghiệm thỏa mãn là \(2^k=16\Rightarrow k=4\Rightarrow n=8\)

25 tháng 1 2022

tôi thấy  k=8^2,8^3,8^4.............

7 tháng 8 2018

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

30 tháng 7 2016

\(a=n^2\left(n^4-n^2+2n+2\right)\)

A=\(n^2\left(n+1\right)\left(n^3-n^2+2\right)\)

A=\(n^2\left(n+1\right)\left(n^3+1-n^2+1\right)\)

A=\(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

A=\(n^2\left(n+1\right)^2\left(n-1\right)+n^2\left(n+1\right)^2\)

nhận thấy n^2 -2n+2=\(\left(n-1\right)^2+1>\left(n-1\right)^2\)(1) (vì n>1)

vì n>1 => 2n>2

=>2n-2>0

=>\(n^2-\left(2n-2\right)< n^2\)

hay \(n^2-2n+2< n^2\)(2)

từ (1) và (2) =>\(\left(n-1\right)^2< n^2-2n+2< n^2\)

=>\(n^2-2n+2\)không là số chính phương

=> A= \(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) không là số chính phương

mình làm tắt chỗ nào không hiểu hỏi mình trả lời cho

7 tháng 12 2015

 

Đặt  2n +1 =a2

    3n +4 =b2

2b2 -3a2 =6n +8 -6n -3 =5

2(b2 -a2) = a2 +5  => a2 là số chính phưng lẻ  < 200  ( 2n +1 < 200)

+a2 =25 => a =5 => n =12  khi đó  3.12 +4 =40  =b2 loại

+a2 = 49 => n =24 => 24.3 +4 =76 =b2 loại

+a2 =81 => n =40 => 40.3 +4 =124 =b2 loại

+a2 =121 => n =60 => 60.3 +4 =184 = b2 loại

+a2 =169 => n =84 => 84.3 +4 =256 =162 =b2 => b =16 (TM)

Vậy  n =84

3 tháng 12 2015

ko có bạn nhé
chỉ có 2n + 1 và 3n + 1 thôi

2n+2003=a^2

2n+2005=b^2

ta co 3a^2-2b^2=6n+6009-6n-4010=1999<=>a^2-b^2=1999 (1)

ro rang ta thay a^2 la so le=> a la so le =>a=2k+1

tu 1 =>3.(2k+1)^2-2b^2=1999<=>12x^3+12x+3-2b^2=1999

<=>2b^2=12x^2+12x-1996

<=>b^2=6x^2+6x-998=>b^2=6x(x+1)=998

vi x.(x+1) chia het cho 2

=>6x(x+1) chia het cho 4

ma 998 chia 4 du 2 

=>b^2 chia 4 du 2 (vo li)         vi 1 so chinh phuong chia 4 lon hon 1 chia 4 du 1 hoac chia het

=>khong co n thoa man de bai

27 tháng 8 2019

Cảm ơn OLM đã trừ điểm https://olm.vn/thanhvien/kimmai123az, e rất ghi nhận sự tiến bộ về sự công bằng của olm.Nhưng vẫn còn nhìu cây mà con chó này copy nek, mong olm xét ạ https://olm.vn/hoi-dap/detail/228356929591.html////////https://olm.vn/hoi-dap/detail/228472453946.html/////https://olm.vn/hoi-dap/detail/228437567447.html//////////https://olm.vn/hoi-dap/detail/228435268921.html

Vô trangh cá nhân của e sẽ thấy đc những câu trả lời "siêu hay" của con chóhttps://olm.vn/thanhvien/kimmai123az

25 tháng 2 2016

Lớp 6 mà!

25 tháng 2 2016

Vì n là số tự nhiên có 2 chữ số thì \(10\le n\le99\)

=>\(21\le2n+1\le199\)

Vì 2n+1 là số chính phương

=>2n+1=(16;25;36;499;64;81;100;121;169)

n=(12;24;40;60;84)

=>3n+1=(37;73;121;181;253)

Mà 3n+1 là số chính phương

=>3n+1=121

=>n=40

DD
20 tháng 6 2021

\(n^2+2n+\sqrt{n^2+2n+18}+9\)là số chính phương thì \(\sqrt{n^2+2n+18}\)là số tự nhiên.

Khi đó \(n^2+2n+18=m^2\)

\(\Leftrightarrow\left(m-n-1\right)\left(m+n+1\right)=1.17\)

Do \(m,n\)là số tự nhiên nên 

\(\hept{\begin{cases}m-n-1=1\\m+n+1=17\end{cases}}\Leftrightarrow\hept{\begin{cases}m=9\\n=7\end{cases}}\)

Với \(n=7\)thì \(n^2+2n+\sqrt{n^2+2n+18}+9=7^2+2.7+\sqrt{7^2+2.7+18}+9\)

\(=81=9^2\)là số chính phương (thỏa mãn).

Vậy \(n=7\).