Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để 15x^n+2-y^n chia hết cho 3x^3y^4
Suy ra: n+2>=3 và n>=4
Suy ra: n>=1 và n>=4
Đến đay thì bạn tự làm nhé!
\(2,n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
Vì n lẻ \(\Rightarrow\)n có dạng \(2k+1\), thay vào ta có :
\(\Rightarrow\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right).2k.\left(2k+2\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì \(k\left(k+1\right)\left(k+2\right)\)là 3 số tự nhiên liên tiếp
\(\Rightarrow k\left(k+1\right)\left(k+2\right)\)\(⋮\)\(6\)
\(\Leftrightarrow8k\left(k+1\right)\left(k+2\right)\)\(⋮\)\(48\)
\(\Rightarrow n^3+3n^2-n-3\)\(⋮\)\(48\)\(\left(đpcm\right)\)
Đề câu 1 bài đầu tiên sai rồi em. VD như n=3 lẻ thì n^2+4n+8 =29 không chia hết cho 8
Đề bài đúng: \(n^2+4n+3\) chia hết cho 8 với mọi n lẻ
Chứng minh:
\(n^2+4n+3=n^2+n+3n+3=n\left(n+1\right)+3\left(n+1\right)=\left(n+1\right)\left(n+3\right)\)
Vì n lẻ nên : n=2k+1, k thuộc N
Ta có: \(n^2+4n+3=\left(2k+1+1\right)\left(2k+1+3\right)=\left(2k+2\right)\left(2k+4\right)=4\left(k+1\right)\left(k+2\right)\)
Vì (k+1) và (k+2) là hai số tự nhiên liên tiếp nên tích của nó sẽ chia hết cho 2
=> 4 (k+1)(k+2) chia hết cho 8
nên \(n^2+4n+3\)chia hết cho 8 với n là số tự nhiên lẻ.
Bài giải :
8.1 x+y=xy
⇒x-xy+y=0
⇒x(1-y)+(y-1)+1=0
⇒(x-1)(1-y)+1=0
⇒(x-1)(y-1)-1=0
⇒(x-1)(y-1)=1
⇒x-1, y-1 là ước của 1
⇒x-1=1,y-1=1 hoặc x-1=-1,y-1=-1
⇒(x;y)=(2;2),(0;0)
8.3. 5xy-2y²-2x²+2=0
⇔(x-2y)(y-2x)+2=0
⇔(x-2y)(2x-y)=2
⇒x-2y và 2x-y là ước của 2
f(x) = ( x2010 + x20 + x19 + x + 1 ) : ( 1 - x2 )
f(x) = ( x2010 + x20 + x19 + x + 1 ) : ( 1 - x ) ( 1 + x )
Áp dụng định lý Bezout ta có 2 đa thức dư :
+) f(1) = 12010 + 120 + 119 + 1 + 1 = 5
+) f(-1) = (-1)2010 + (-1)20 + (-1)19 - 1 + 1 = 1
Vậy có 2 đa thức dư là f(1) = 5 và f(-1) = 1
xnyn+1 : x2y5
=> n = 4
Làm đại ko chắc đúng
xnyn + 1 : x2y5
= (xn : x2)(yn + 1 : y5)
=> n - 4 \(\ge\)0
=> n \(\ge\) 4