Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đã cho có dạng \(\overline{abcd}\)
Theo đề bài ta có:
\(\left\{{}\begin{matrix}\overline{abcd}=x^2\\\overline{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1000a+100b+10c+d=x^2\\1000a+100b+10c+d+1000+100+10+1=y^2\end{matrix}\right.\)
\(\Rightarrow y^2-x^2=1111\)
\(\Leftrightarrow\left(y-x\right)\left(y+x\right)=1111\)
Dễ nhận thấy x,y đều là số dương
Nên \(y-x< y+x\)
\(\Rightarrow\left(y-x\right)\left(y+x\right)=1.1111=11.101\)
Ta có bảng sau :
y-x | 1 | 11 |
y+x | 1111 | 101 |
y | 556 | 56 |
x | 555 | 55 |
tiếp nhé
TH1: x = 555 ; y = 556
\(\Rightarrow\left\{{}\begin{matrix}x^2=308025\\y^2=309136\end{matrix}\right.\)
Vô lí do x2 và y2 là các số có 4 chữ số
TH2: x=55 ; y=56
\(\Rightarrow\left\{{}\begin{matrix}x^2=3025\\y^2=3136\end{matrix}\right.\) (Nhận)
Vậy số có 4 chữ số cần tìm là 3025
Có phải bài này là điều kiện đồng thời đúng không??
Ta nhận thấy n phải là số tự nhiên
Giống như bài dưới ta cũng sử dụng tính chất của số chính phương
Một số chính phương chia 4 chỉ dư 0 hoặc 1
Tự chứng minh.........
Với n>1 ta có 2n chia hết cho 4 mà 15 chia 4 dư 3 nên 2n+15 chia 4 dư 3 không là số chính phương
Vậy n=0 hoăc n=1 ta thấy n=0 thỏa mãn cả hai cái
Vậy n=0 để ......
BÀI DẠNG NÀY TỪ HỒI LÊN LỚP 9 MK CHẢ GẶP BAO GIỜ CẢ BẠN CÓ BÀI DẠNG NÀY AK