Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi d là ước nguyên tố của 63 và 3n+1
63 chia hết cho d nên d=7
Để A rút gọn đc thì 3n+1 chia hết cho 7
=>3n-6 chia hết cho 7
=>n-2 chia hết cho 7
=>n=7k+2
a: Để A là số tự nhiên thì \(3n+1\in\left\{1;3;7;9;21;63\right\}\)
mà n là số tự nhiên
nên n=0 hoặc n=2
Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)
Ta có bảng :
3n + 4 | 1 | 7 | 13 | 91 |
n | -1 | 1 | 3 | 29 |
nhận xét | loại | thỏa mãn | thỏa mãn | thỏa mãn |
Vậy ......
b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)
=> 3n + 4 ko chia hết cho ước nguyên tố của 91
=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)
=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)
a) \(A=\frac{8n+193}{4n+3}=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để \(A\inℕ\Rightarrow187⋮4n+3\Rightarrow4n+3\in\left\{17;11;187\right\}\)
+ \(4n+3=11\Leftrightarrow n=2\)
+ \(4n+3=187\Leftrightarrow n=46\)
+ \(4n+3=17\Leftrightarrow4n=14\) ( không tồn tại \(n\inℕ\))
Vậy n=2, 46
b) A tối giản khi 187 và 4n+3 có ƯCLN =1
\(\Rightarrow n\ne11k+2\left(k\inℕ\right)\)
\(n\ne17m+12\left(m\inℕ\right)\)
c) \(n=156\Rightarrow A=\frac{17}{19}\)
\(n=165\Rightarrow A=\frac{89}{39}\)
\(n=167\Rightarrow A=\frac{139}{61}\)
Để 6n+99/3n+4 là số tự nhiên thì 6n+99 chia hết cho 3n+4
=>6n+8+91 chia hết cho 3n+4
=>2(3n+4)+91 chia hết cho 3n+4
Mà 2(3n+4) chia hết cho 3n+4
=>91 chia hết cho 3n+4
=>3n+4\(\in\){1,7,13,91}
=>3n\(\in\){-3,3,9,87}
=>n\(\in\){-1,1,3,29}
Vì n là số tự nhiên nên n\(\in\){1,3,29}
a: Để A là số tự nhiên thì
6n+8+91 chia hết cho 3n+4
mà n>=0
nên \(3n+4\in\left\{7;13;91\right\}\)
=>n=1 hoặc n=3
b: Để A là phân số tối giản thì 3n+4 ko là ước của 91
=>3n+4<>7k và 3n+4<>13a
=>n<>(7k-4)/3 và n<>(13a-4)/3(k,a là các số tự nhiên)
Đặt \(A=\frac{6n+99}{3n+4}\)
Để A có giá trị là số tự nhiên thì 6n+99 phải chia hết cho 3n+4
Vì 6n+99 chia hết cho 3n+4
suy ra 6n+99 chia hết cho 2(3n+4)
suy ra 6n+99 chia hết cho 6n+8
Vậy suy ra 6n+99-(6n+8) chia hết cho 6n+8
91 chia hết cho 6n +8
Vậy suy ra 6n+8 thuộc ước của 91
Ư(91)={1;91;7;13}
th1 6n+8=1 suy ra n thuộc rỗng
th2 6n+8=7 suy ra n thuộc rỗng
th3 6n+8=13 suy ra n thuộc rỗng
th4 6n+8=91 suy ra n thuộc rỗng
Vậy ko có N hoặc đề bài sai
\(\frac{6n+99}{3n+4}=\frac{\left(6n+8\right)+91}{3n+4}=2+\frac{91}{3n+4}\)
để phân số đó thuộc N =>91 chia hết cho 3n+4
\(\Rightarrow3n+4\in\left\{1;7;13;91\right\}\)
\(\Rightarrow3n\in\left\{3;9;88\right\}\)
\(\Rightarrow n\in\left\{1;3\right\}\)