\(\frac{31n+4}{64n+3}\) rút gọn được

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2015

Gọi d = ƯC (21n + 3; 6n + 4) (d là số  nguyên tố  vì  nếu tử và mẫu có chung ước thì sẽ có chung các uơcs nguyên tố   )

=> 21n + 3 chia hết cho d; 6n + 4 chia hết cho d

=> 7. (6n +4) - 2.(21n +3) chia hết cho d 

Hay 22 chia hết cho d; d nguyên tố nên d = 2 hoặc 11

+) d = 2 => 21n + 3 chia hết cho 2 và 6n + 4 chia hết cho 2 (luôn đúng)

Chỉ cần 21n +3 chia hết cho 2 => n lẻ

+) d = 11 : để 21n + 3 chia hết cho 11 => 22n  - - n + 3  chia hết cho 11

=>  n - 3  chia hết cho 11  => n = 3 + 11k

=> 6n + 4 = 6(3 + 11k) + 4 = 66k + 22 chia hết cho 11

Vậy n = 3 + 11k hoặc n lẻ thì A rút gọn được

4 tháng 7 2015

Ta có :
(21n+3)/(6n+4) 
= 4 - (3n+13)/(6n+4) 
= 4 - 1/2.(6n+26)/(6n+4) 
= 4 - 1/2.(1+22/(6n+4)) 
Để là số nguyên thì 6n+4 phải là ước của 22 và thương 22/(6n+4) phải là số lẻ 
=> 6n+4=22 (Vì n là số tự nhiên nên chỉ có giá trị này thỏa mãn) 

=> 6n = 18

=> n = 3 

18 tháng 6 2020

1) Đặt: ( n + 9 ;  n - 6 ) = d  với d là số tự nhiên 

=> \(\hept{\begin{cases}n+9⋮d\\n-6⋮d\end{cases}}\Rightarrow\left(n+9\right)-\left(n-6\right)⋮d\Rightarrow15⋮d\)

=> d \(\in\)Ư ( 15 ) = { 1; 3; 5; 15 }

=> d có thể rút gọn cho số 3; 5; 15 

18 tháng 6 2020

2) Đặt: ( 18n + 3 ; 23n + 7 ) = d 

=> \(\hept{\begin{cases}18n+3⋮d\\23n+7⋮d\end{cases}}\Rightarrow23\left(18n+3\right)-18\left(23n+7\right)⋮d\)

=> \(57⋮d\)

=> \(d\inƯ\left(57\right)=\left\{1;3;19;57\right\}\)

=> \(\frac{18n+3}{\text{23n+7}}\) rút gọn được  khi d = 3; d = 19 ; d = 57 

Vì rút gọn được cho 57 thì sẽ rút gọn được cho 3 và cho 19 

Nên mình chỉ cần xác định n với d = 3 và d =19 

+) Với d = 3 

\(\hept{\begin{cases}18n+3⋮3\\23n+7⋮3\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮3\)

=> \(n+11⋮3\)

=> \(n-1⋮3\)

=>Tồn tại số tự nhiên k sao cho:  \(n=3k+1\)khi đo phân số sẽ rút gọn được cho 3

+) Với d = 19

\(\hept{\begin{cases}18n+3⋮19\\23n+7⋮19\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮19\)

=> \(n+11⋮19\Rightarrow n-8⋮19\)

=> Tồn tại số tự nhiên k sao cho n = 19k + 8 khi đó phân số sẽ rút gọn được cho 19

Vậy n = 3k + 1 hoặc  n = 19k + 8 thì phân số sẽ rút gọn được.

22 tháng 2 2018

b) \(\frac{121212}{424242}=\frac{121212:60606}{424242:60606}=\frac{2}{7}\)

c) \(\frac{3.7.13.37.39-10101}{505050+707070}\)

\(=\frac{393939-10101}{1212120}\)

\(=\frac{383838}{1212120}\)

\(=\frac{19}{60}\)

26 tháng 4 2020

ai biêt

DD
18 tháng 6 2021

a) \(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\inℕ\)mà \(n\inℕ\)

suy ra \(4n+3\inƯ\left(187\right)\Rightarrow4n+3\in\left\{11;17;187\right\}\)(vì \(4n+3\ge3\)

\(\Rightarrow n\in\left\{2;46\right\}\).

DD
18 tháng 6 2021

b) \(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\)rút gọn được khi \(\frac{187}{4n+3}\)rút gọn được. 

Ta có: \(187=11.17\)suy ra \(\orbr{\begin{cases}\left(4n+3\right)⋮11\\\left(4n+3\right)⋮17\end{cases}}\)

\(4n+3=11k\Leftrightarrow n=\frac{11k-3}{4}\)

\(150< n< 170\Rightarrow150< \frac{11k-3}{4}< 170\Rightarrow55\le k\le62\)

ta có các giá trị của \(n\)thỏa mãn là: \(156,167\).

\(4n+3=17k\)xét tương tự, thu được các giá trị \(n\)thỏa mãn là: \(165\)

Vậy các giá trị của \(n\)thỏa mãn là: \(156,165,167\).

31 tháng 12 2016

Đáp án : n = 3 ; 6 ; 9 ; 12 ; 15 ; ...

31 tháng 12 2016

Bạn giải ra hộ mình được ko?