Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\frac{n+1}{n-1}=\frac{n-1+2}{n-1}\) \(=\frac{2}{n-1}\)
để \(\frac{n+1}{n-1}\) là số tự nhiên thì \(\frac{2}{n-1}\) phải là số tự nhiên
hay 2 chia hết cho n - 1
\(\Rightarrow n-1\inƯ\left(2\right)\)
mà Ư(2) = { - 2; -1; 1; 2}
\(\Rightarrow n-1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow n\in\left\{-1;0;2;3\right\}\)
vì n là số tự nhiên
\(\Rightarrow n\in\left\{0;2;3\right\}\)
vậy .......
ủng hộ mk nha
a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d
=> (14n+3) -(21n+4) \(⋮\)d
=> 3(14n+3) -2(21n+4) \(⋮\)d
=> 42n+9 - 42n -8 \(⋮\)d
=> 1\(⋮\)d
=> 21n+4/14n+3 là phân số tối giản
Vậy...
c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d
=> (6n+4) - (21n+3) \(⋮\)d
=> 7(6n+4) - 2(21n+3) \(⋮\)d
=> 42n +28 - 42n -6\(⋮\)d
=> 22 \(⋮\)cho số nguyên tố d
d \(\in\){11;2}
Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11
Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ
Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11
Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được
bài ta có : 2n+15 chia hết n+1 suy ra 2n+15=n+1+n+1+13chia hết n+1 suy ra n+1 thuộc Ư của 13 suy ra
Ư của 13 =[1,13] suy ra n =[0;12]
vay n=[0;12]
\(\frac{n+1}{n-1}=\frac{n-1+2}{n-1}=\frac{2}{n-1}\)
\(\Rightarrow n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta cs bảng
n-1 | 1 | -1 | 2 | -2 |
n | 2 | 0 | 3 | -1 |
Vì \(n\in N\)
\(\Rightarrow n=0;2;3\)
a, ta có n+2/n-1=n-1+3/n-1(biến đổi tử để giống mẫu)=1+3/n-1
để n+2/n-1 có giá trị nguyên thì n-1 thuộc Ư(3)
ta có bảng: n-1 1 3
n 2 4
Vậy 2 STn đó là 2 hoặc 4
b, Gọi d là ƯC(n+1;2n+1)
ta có: n+1/2n+1=2n+2/2n+1
d= (2n+2)-(2n+1)= 1
Hai phân số tối giản khi tử và mẫu là 2 số nguyên tố cùng nhau và có ƯC=1
=) phân số đó tối giản
Xem cách giải mình nhé bạn, đúng thì nhé!
em khong biet hoc lop4 ma
\(\frac{n+1}{n-1}=\frac{\left(n-1\right)+2}{n-1}=\frac{n-1}{n-1}+\frac{2}{n-1}=1+\frac{2}{n-1}\)
Để \(1+\frac{2}{n-1}\) là số tự nhiên <=> \(\frac{2}{n-1}\) là số tự nhiên
=> n - 1 \(\in\) Ư(2) = { - 2; - 1; 1; 2 }
Ta có : n - 1 = - 2 => n = - 1 (loại)
n - 1 = - 1 => n = 0 (tm)
n - 1 = 1 => n = 2 (tm)
n - 1 = 2 => n = 3 (tm)
Vậy n = { 0; 2; 3 }