K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2017

a, Gọi d = ƯCLN(7n+13;2n+4).

=>2(7n+13) ⋮ d; 7(2n+4)d

=> [(14n+28) – (14n+6)]d

=> 2d => d = {1;2}

Nếu d = 2 thì (7n+3)2 => [7(n+1)+6]2 => 7(n+1)2

Mà ƯCLN(7,2) = 1 nên (n+1)2 => n = 2k–1

Vậy để 7n+13 và 2n+4 nguyên tố cùng nhau thì  2k–1

b, Gọi d =  ƯCLN(4n+3;2n+3)

=> (4n+3)d; 2(2n+3)d

=> [(4n+6) – (4n+3)]d

=> 3d => d = {1;3}

Nếu d = 3 thì (4n+3) ⋮ 3 => [3(n+1)+n] ⋮ 3 => n ⋮ 3 => n = 3k

Vậy để 4n+3 và 2n+3 nguyên tố cùng nhau thì n ≠ 3k

29 tháng 10 2017

 Tìm n ∈  N để:( 4n+ 3) và 2n+ 3 nguyên tố cùng nhau và  2n + 3 4n + 3  tối giảm. b) 7n+ 13 và 2n+ 4 nguyên tố cùng nhau. b, giả sử d = ( 7n +13 ; 2n + 4)  ta có 7n + 13 = 3.( 2n +4 ) + (n + 1)  2n + 4 = 2.(n +1) + 2  => d = ( n +1; 2)  Để 7n + 13 và 2n + 4 là số nguyên tố cùng nhau thì d = 1  => n + 1 không chia hết cho 2  => n+ 1 = 2k + 1 , k thuộc N  => n = 2k  Vậy với n = 2k thì 7n + 13 và 2n + 4 nguyên tố cùng nhau

29 tháng 10 2017

b, giả sử d = ( 7n +13 ; 2n + 4) 
ta có 7n + 13 = 3.( 2n +4 ) + (n + 1) 
2n + 4 = 2.(n +1) + 2 
=> d = ( n +1; 2) 
Để 7n + 13 và 2n + 4 là số nguyên tố cùng nhau thì d = 1 
=> n + 1 không chia hết cho 2 
=> n+ 1 = 2k + 1 , k thuộc N 
=> n = 2k 
Vậy với n = 2k thì 7n + 13 và 2n + 4 nguyên tố cùng nhau

23 tháng 2 2019

a, Đặt d = ƯCLN(2n+3;4n+8)

=> 2(2n+3) ⋮ d; (4n+8) ⋮ d

=> [(4n+8) – (4n+6)]d

=> 2d => d ⋮ {1;2}

Mặt khác 2n+3 là số lẻ nên d ≠ 2.

Vậy d = 1. Hay với mọi số tự nhiên n thì các số 2n+3 và 4n+8 nguyên tố cùng nhau

b, Đặt d = ƯCLN(2n+5;3n+7)

=> 3(2n+5)d; 2(3n+7)d

=> [(6n+15) – (6n+14)]d

=> 1d => d = 1

Vậy d = 1. Hay với mọi số tự nhiên n thì các số 2n+5 và 3n+7 nguyên tố cùng nhau.

c, Đặt d = ƯCLN(7n+10;5n+7)

=> 5(7n+10)d; 7(5n+7)d

=> [(35n+50) – (35n+49)]d

=> 1d => d = 1

Vậy d = 1. Hay với mọi số tự nhiên n thì các số 7n+10 và 5n+7 nguyên tố cùng nhau

19 tháng 7 2017

4 tháng 1 2018

a, n = 0

b, n = 0

c, n = 3

d, n = 2

4 tháng 1 2018

n=0;n=0;n=3;n=2