Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta dựa vào nhận xét sau đây: Nếu \(p\) là số nguyên tố và \(p=ab\) với a,b là các số nguyên dương thì a=1 hoặc b=1. Ta có
\(A=n^4+4\cdot2^{4k}=\left(n^2\right)^2+2\cdot n^2\cdot2^{2k+1}+\left(2^{2k+1}\right)^2-2^{2k+2}\cdot n^2\)
\(=\left(n^2+2^{2k+1}\right)^2-\left(2^{k+1}\cdot n\right)^2=\left(n^2+2^{2k+1}-2^{k+1}\cdot n\right)\left(n^2+2^{2k+1}+2^{k+1}n\right).\)
Vì A là số nguyên tố và \(n^2+2^{2k+1}-2^{k+1}\cdot n<\)\(n^2+2^{2k+1}+2^{k+1}\cdot n\). Suy ra \(n^2+2^{2k+1}-2^{k+1}\cdot n=1\). Suy ra \(\left(n-2^k\right)^2+2^{2k}=1\to n=2^k,2^{2k}=1\to k=0,n=1.\) Khi đó A=1+4=5 là số nguyên tố.
Để A = n4 + 42k+1 là số nguyên tố <=> ƯC ( n4 ; 42k+1 ) = 1
=> n4 và 42k+1 chỉ có 1 ước nguyên dương
=> ( 4 + 1 )( 2k + 1 + 1 ) = 1
=> 5.( 2k + 2 ) = 1 => 10k + 10 = 1
=> 10k = - 9 => k = - 9/10
Theo đề , n và k là số tự nhiên
=> n ; k ∈ ∅
đăng 1 cái là ok rồi đăng j lắm thế
Gợi ý: Áp dụng hằng đẳng thức a4+4b4=a4+4a2b2-(2ab)2=(a^2+2b^2-2ab)(a^2+2b^2+2ab)
thấy n^4+4^2k+1=n^4+4(2^k)^4 áp dụng hằng đẳng thức trên là xong
mà trong câu hỏi tương tự cũng có đó mặc dù ko có lời giải
Nếu \(n=0\to n^{1997}+n^{1975}+1=1\) không phải là số nguyên tố.
Xét \(n\) là số nguyên dương. Ta có \(n^{1997}-n^2=n^2\left(n^{3\times665}-1\right)\vdots\left(n^3\right)^{665}-1\vdots n^3-1\vdots n^2+n+1.\)
Suy ra \(n^{1997}-n^2\vdots n^2+n+1.\)
Tương tự, \(n^{1975}-n=n\left(n^{3\times658}-1\right)\vdots\left(n^3\right)^{658}-1\vdots n^3-1\vdots n^2+n+1.\)
Từ đó ta suy ra \(n^{1997}+n^{1975}+1=\left(n^{1997}-n^2\right)+\left(n^{1975}-n\right)+\left(n^2+n+1\right)\vdots n^2+n+1.\)
Vì \(n^{1997}+n^{1975}+1\) là số nguyên tố (chỉ có hai ước dương là 1 và chính nó) và \(n^2+n+1>1\), nên \(n^{1997}+n^{1975}+1=n^2+n+1.\) Suy ra \(\left(n^{1997}-n^2\right)+\left(n^{1975}-n\right)=0.\) Do \(n\)là số nguyên dương nên \(\left(n^{1997}-n^2\right)\ge0,\left(n^{1975}-n\right)\ge0.\) Vậy \(n=1.\)
Thử lại với \(n=1\to n^{1997}+n^{1975}+1=3\) là số nguyên tố.
Đáp số \(n=1.\)
\(1,\text{Nếu p;q cùng lẻ thì:}7pq^2+p\text{ chẵn};q^3+43p^3+1\text{ lẻ}\Rightarrow\text{có ít nhất 1 số chẵn}\)
\(+,p=2\Rightarrow14q^2+2=q^3+345\Leftrightarrow14q^2=q^3+343\)
\(\Leftrightarrow q^2\left(14-q\right)=343\text{ đến đây thì :))}\)
\(+,q=2\Rightarrow29p=9+43p^3\Leftrightarrow29p-43p^3=9\text{loại}\)
\(+,p=q=2\Rightarrow7.8+2=8+43.8+1\left(\text{loại}\right)\)
Ta có \(n^4-3n^2+1=\left(n^4-2n^2+1\right)-n^2\)
\(=\left(n^2-1\right)^2-n^2\)
=(n^2-n-1)(n^2+n-1)
Để B là số nguyên tố thì
n^2-n-1=1,n^2+n-1 là số nguyên tố
=>n=2 thỏa mãn
Vậy n=2
\(B=n^5+n^4+1=n^5-n^2+n^4-n+n^2+n+1\)
\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1\)
\(=\left(n^2+n+1\right)\left(n^3-n+1\right)\)
+) Với \(n=0\Rightarrow B=1\)không là số nguyên tố (loại)
+) Với \(n=1\Rightarrow B=3\)là số nguyên tố(thỏa mãn)
+) Với \(n\ge2\left(n\in N\right)\Rightarrow n^3-n+1\ge n^2+n+1\ge7\)
Do đó B là hợp số
Vậy n=1 là giá trị cần tìm.
Ta có:\(n^5+n^4+1=n^5+n^4+n^3-n^3+1\)
\(=n^3\left(n^2+n+1\right)-\left(n-1\right)\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(n^3-n-1\right)\)
Đk để là số nguyên tố thì:
\(n^2+n+1=1\)hoặc \(n^3-n-1=1\)
Xét \(n^2+n+1=1\Rightarrow n^2+n=0\Rightarrow\orbr{\begin{cases}n=1\left(tm\right)\\n=-1\left(ktm\right)\end{cases}}\)
Xét \(n^3-n+1=1\Rightarrow n^3-n=0\Rightarrow n\left(n^2-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}n=0\left(tm\right)\\\orbr{\begin{cases}n=1\left(tm\Rightarrow\right)\\n=-1\left(ktm\right)\end{cases}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}n=0\left(tm\right)\\n=1\left(tm\right);n=-1\left(ktm\right)\end{cases}}\)
Tại \(n=0\Rightarrow A=1\left(ktm\right)\)Vì 1 không phải số ngto
Tại\(n=1\Rightarrow A=3\left(tm\right)\)vì 3 là số ngto
Vậy ...