K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

A = \(n^3-4n^2+6n-4=\left(n-2\right)\left(n^2-2n+2\right)\)

A là số nguyên tố

\(\Leftrightarrow\left[{}\begin{matrix}n-2=1\\n^2-2n+2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=3\left(nhan\right)\\n=1\left(loai\right)\end{matrix}\right.\)

Vậy n = 3

1 tháng 12 2018

Đáp án D

9 tháng 10 2016

Ba số tự nhiên lẻ liên tiếp đều là số nguyên tố là :

3 ; 5 ; 7

9 tháng 10 2016
Các số đó là:  3, 5, 7 vì nếu 3 số lẻ liên tiếp thì sẽ có 1 số chia hết cho 3 mà chỉ có số 3 là số nguyên tố duy nhất chia hết cho 3 và nhớ 1 ko phải là số nguyên tố nhé!
21 tháng 8 2021

a. \(x=\left\{4;9;16\right\}\)

b. \(x=1\)

c. \(x=\left\{-2;-1\right\}\)

21 tháng 8 2021

giải ra giúp mình với 

4 tháng 4 2018

Đáp án A

Dễ thấy mệnh đề P: “5 là số có hai chữ số” là mệnh đề sai nên mệnh đề Q là mệnh đề nào cũng luôn thỏa mãn P => Q là mệnh đề đúng.

Vậy không có mệnh đề nào thỏa mãn bài toán.

TC
Thầy Cao Đô
Giáo viên VIP
16 tháng 12 2022

Ý thứ hai: Từ giả thiết $p$ nguyên tố suy ra $b$ chẵn (vì $b$ phải chia hết cho $4$), ta đặt $b=2 c$ thì:

$p=\dfrac{c}{2} \sqrt{\dfrac{a-c}{b-c}} \Leftrightarrow \dfrac{4 p^2}{c^2}=\dfrac{a-c}{a+c}$.

Đặt $\dfrac{2 p}{c}=\dfrac{m}{n}$, với $(m, n)=1$ $\Rightarrow\left\{\begin{aligned} &a-c=k m^2 \\ &a+c=k n^2\\ \end{aligned}\right. \Rightarrow 2 c=k\left(n^2-m^2\right)$ và $4 p n=k m\left(n^2-m^2\right).$

+ Nếu $m$, $n$ cùng lẻ thì $4 p n=k m\left(n^2-m^2\right) \, \vdots \, 8 \Rightarrow p$ chẵn, tức là $p=2$.

+ Nếu $m$, $n$ không cùng lẻ thì $m$ chia $4$ dư $2$. (do $2p$ không là số chẵn không chia hết cho $4$ và $\dfrac{2 p}{c}$ là phân số tối giản). Khi đó $n$ là số lẻ nên $n^2-m^2$ là số lẻ nên không chia hết cho $4$ suy ra $k$ là số chia hết cho $2$.

Đặt $k=2 r$ ta có $2 p n=r m\left(n^2-m^2\right)$ mà $\left(n^2-m^2, n\right)=1 \Rightarrow r \, \vdots \, n$ đặt $r=n s$ ta có $2 p=s(n-m)(n+m) m$ do $n-m, n+m$ đều là các số lẻ nên $n+m=p$, $n-m=1$, suy ra $s, m \leq 2$ và $(m ; n)=(1 ; 2)$ hoặc $(2 ; 3)$.

Trong cả hai trường họp đều suy ra $p \leq 5$.

Với $p=5$ thì $m=2$, $n=3$, $s=1$, $r=3$, $k=6$, $c=15$, $b=30$, $a=39$.

TC
Thầy Cao Đô
Giáo viên VIP
16 tháng 12 2022

Ý thứ nhất: 

TH1: Nếu $p=3$, ta có $3^6-1=2^3 .7 .11 \, \vdots \, q^2$ hay $q^2 \, \big| \, 2^3 .7 .11$ nên $q=2$.

TH2: Nếu $p \neq 3$, ta có $p^2 \, \big| \, (q+1)\left(q^2-q+1\right)$.

Mà $\left(q+1, q^2-q+1\right)=(q+1,3)=1$ hoặc $3$. Suy ra hoặc $p^2  \, \big| \,  q+1$ hoặc $p^2  \, \big| \,  q^2-q+1$ nên $p < q$.

+ Nếu $q=p+1$ ta có $p=2$, $q=3$.

+ Nếu $q \geq p+2$. 

Ta có $p^6-1=(p^3)^2-1=(p^3-1)(p^3+1)$ nên $q^2  \, \big| \, (p-1)(p+1).(p^2-p+1).(p^2+p+1)$.

Do $(q, p+1)=(q, p-1)=1$ và $\left(p^2-p+1, p^2+p+1\right)=\left(p^2+p+1,2 p\right)=1$ nên ta có hoặc $q^2  \, \big| \,  p^2+p+1$ hoặc $q^2  \, \big| \,  p^2-p+1$.

Mà $q \geq p+2$ nên $q^2 \geq(p+2)^2>p^2+p+1>p^2-p+1$.

Vậy $(p, q)=(2,3) ; \, (3,2)$.

Để A là số tự nhiên thì \(5n-2=3\)

hay n=1