Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1;\(5n-24⋮n-2\)
\(5n-10-14⋮n-2\)
\(\Rightarrow14⋮n-2\)
\(\Rightarrow n-2\in\left(1;2;7;14\right)\)
\(\Rightarrow n\in\left(3;4;9;16\right)\)
Xét 5n-24=5n-10+14=5(n-2)+14
vì n-2chia het n-2 suy ra 5(n-2)chia hết n-2
suy ra 14chia het n-2
suu ra n-2 thuoc uoc cua 14
suy ra n-2 thuộc 1;2;7;14
suy ra thuộc 3;4;9;16
ƯCLN của hai số tự nhiên không nguyên tố cùng nhau : 4n +3; b=5n+1(n là số tự nhiên) .Tìm ƯCLN (a,b)
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt
Gọi d là Ư(2n+7) (d≠1)
⇒ 2n+7⋮ d⇒ 10n+35⋮ d
Và 5n+2⋮ d⇒ 10n+4⋮ d
⇒ 10n+35−10n−4⋮ d
⇒ 31⋮ d
⇒ d=31
⇒ 5n+2⋮ 31 và 2n+7⋮ 31
Liệt kê n, ta có n ∈ {29;322;353}
Gọi d là Ư(2n+7)(Điều kiện: \(d\ne1\) và \(d\in N\))
\(\Leftrightarrow2n+7⋮d\)
\(\Leftrightarrow5\cdot\left(2n+7\right)⋮d\)
\(\Leftrightarrow10n+35⋮d\)
Để 5n+2 và 2n+7 không phải là hai số nguyên tố cùng nhau thì \(\dfrac{5n+2}{2n+7}\) không phải là phân số tối giản
mà \(2n+7⋮d\)(cmt)
nên \(5n+2⋮d\)
\(\Leftrightarrow2\cdot\left(5n+2\right)⋮d\)
\(\Leftrightarrow10n+4⋮d\)
mà \(10n+35⋮d\)
nên \(10n+35-10n-4⋮d\)
\(\Leftrightarrow31⋮d\)
\(\Leftrightarrow d\inƯ\left(31\right)\)
\(\Leftrightarrow d\in\left\{1;-1;31;-31\right\}\)
Kết hợp ĐKXĐ, ta được: d=31
\(\Leftrightarrow\left\{{}\begin{matrix}5n+2⋮31\\2n+7⋮31\end{matrix}\right.\)
\(\Leftrightarrow5n+2;2n+7\in B\left(31\right)\)
mà \(290\le n\le360\)
nên \(n\in\left\{291;322;353\right\}\)
Vậy: \(n\in\left\{291;322;353\right\}\)
do các số nhân với 5 đều có tận cùng là 5 vs 0
=> chỉ có 5 là số nguyên tố trong số các số nhân với 5
vậy 5n = 5
n = 1
Để 5n là số nguyên tố thì 5n bằng 5 (số nguyên tố duy nhất chia hết cho 5)
=> 5n = 5
n = 1