K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

\(\frac{4n+3}{2n+1}=\frac{2n+1+2n+2}{2n+1}=\frac{2n+1}{2n+1}+\frac{2n+2}{2n+1}=1+\frac{2n+1+1}{2n+1}=1+\frac{2n+1}{2n+1}+\frac{1}{2n+1}=1+1+\frac{1}{2n+1}\)

Để (4n + 3) chia hết cho (2n+1) thì \(\frac{1}{2n+1}\) phải là số nguyên

\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(2n+1=1\Rightarrow n=0\)

\(2n+1=-1\Rightarrow n=-1\) (loại)

Vậy n = 0

15 tháng 12 2016

4n+3 ⋮ 2n+1

=> [4n+3 - 2(2n+1)] ⋮ 2n+1

=> [(4n+3) - (4n+2)] ⋮ 2n+1

=> 1 ⋮ 2n+1

=> 2n+1 \(\in\) Ư(1) = {1}

=> n = {0}

23 tháng 2 2021

a)Ta có: 2n+9 chia hết n+3

<=>(2n+9)-2(n+3) chia hết n+3

<=>(2n+9)-(2n+6) chia hết n+3

<=>3 chia hết n+3

<=>n+3 thuộc {1;3}

<=>n=0

Vậy n = 0

b) Ta có 3n-1 chia hết cho 3-2n

=> 6n-2 chia hết cho 3-2n

=> 3(3-2n)-11 chia hết cho 3-2n

=> 11 chia hết cho 3-2n

=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}

• 3-2n=1 => n=1

• 3-2n=11=> n ko là số tự nhiên

Vậy n=1

c) (15 - 4n) chia hết cho n

=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}

d)  n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5 

e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 = 

13n-1-2

=> n-1 là ước dương của 13

=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13

=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12

Mà n thuộc N và n<8 => n=0 hoặc n=2

g)

6n+9⋮4n−1

⇒2.(6n+9)⋮4n−1

⇒12n+18⋮4n−1

⇒12n−3+21⋮4n−1

⇒3.(4n−1)+21⋮4n−1

Vì 3.(4n−1)⋮4n−1⇒21⋮4n−1

Mà 4n - 1 chia 4 dư 3; 4n−1≥−1 do n∈N

⇒4n−1∈{−1;3;7}

⇒4n∈{0;4;8}

15 tháng 12 2016

2n +1 chia hết cho 2n + 1

suy ra  2 ( 2n + 1 )  chia hết cho  2n + 1

          = 4n + 2  chia hết cho  2n + 1

suy ra  ;  ( 4n + 3 )  -  (  4n + 2 )    chia hết cho 2n + 1

             =   1   chia hết cho  2n + 1  

             =>  2n + 1 thuộc vào Ư( 1 ) = 1

             =>   n = 1

19 tháng 12 2017

Tìm số tự nhiên n để 4n+3 chia hết cho 2n+1

Giải:Ta có:4n+3=4n+2+1=2(2n+1)+1

Để 4n+3 chia hết cho 2n+1 thì 1 phải chia hết cho 2n+1

\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{-1,1\right\}\).Vì n là số tự nhiên nên \(n\ge0\) nên 2n+1\(\ge1\)

Nên chỉ có 2n+1=1 thỏa mãn nên n=0 thỏa mãn

1 tháng 8 2017

a. n=3,0,-2,-5

b,n=2,0,-1,-3

tk mk nha

26 tháng 12 2015

Ta có: 4n+3=2(2n+1) +1

Vì 2(2n+1) chia hết 2n+1

=>1 chia hết 2n+1

=>2n+1\(\in\)Ư(1)

Mà Ư(1)={1}

Do đó , ta có:

2n+1=1

2n   =0

  n=0

Vậy n=0

26 tháng 12 2015

4n+3 chia hết cho 2n+1

=> 4n+2+1 chia hết cho 2n+1

Vì 4n+2 chia hết cho 2n+1

=> 1 chia hết cho 2n+1

=> 2n+1 thuộc Ư(1)

=> 2n+1 thuộc {1; -1}

=> 2n thuộc {0; -2}

=> n thuộc {0; -1}

18 tháng 7 2016

a) n+3 chia hết cho n-1

=> n-1+4 chia hết cho n-1

=> 4 chia hết cho n-1 ( vì n-1 chia hết cho n-1)

=> n-1 thuộc Ư(4)={1;2;4}

Với n-1=1 => n=2

với n-1=2=>n=3

Với n-1=4=>n=5

Vậy...

b) 4n+3 chia hết cho 2n-1

=> 4n-2+5 chia hết cho 2n-1

=> 5 chia hết cho 2n-1

=> 2n-1 thuộc Ư(5)={1;5}

Với 2n-1=5=> 2n=6=> n=3

Với 2n-1=1=> 2n=2=> n=1

Vậy...

c) 4n-5 chia hết cho 2n-1

=> 4n-2+7 chia hết cho 2n-1

=> 7 chia hết cho 2n-1( vì 4n-2 chia hết cho 2n-1)

=> 2n-1 thuộc Ư(7)={1;7}

Với 2n-1=1=> n=1

Với 2n-1=7=> n=4

Vây..

k cho mk

27 tháng 10 2015

4n+3 chia hết cho 2n-1

=> 4n-2+5 chia hết cho 2n-1

=> 2.(2n-1)+5 chia hết cho 2n-1

mà 2.(2n-1) chia hết cho 2n-1

=> 5 chia hết cho 2n-1

=> 2n-1 \(\in\)Ư(5)={1; 5}

+) 2n-1=1

=> 2n=2

=> n=1

+) 2n-1=5

=> 2n=6

=> n=3

Vậy n \(\in\){1; 3}.

27 tháng 10 2015

Minh Hiền đúng rồi tick cho bạn ý đi Đinh Mai Thu !