\(3^{n+1}=3^4\)

b)\(4.2^n=64\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

a) 3n+1 = 34

=> n + 1 = 4

=> n = 4 - 1

=> n = 3

Vậy n = 3

b) 4.2n = 64

=> 2n = 64 : 4

=> 2n = 16 = 24

=> n = 4

Vậy n = 4

\(3^{x+1}=4\)

\(\Rightarrow x+1=4\)

\(\Rightarrow x=4-1\)

\(\Rightarrow x=3\)

6 tháng 7 2016

\(a,\left[\left(0,5\right)^3\right]^n=\frac{1}{64}\Rightarrow\left(0,125\right)^n=0,125^2\Rightarrow n=2\)

\(b,\frac{64}{\left(-2\right)^{n+1}}=4\Rightarrow\left(-2\right)^{n+1}=\frac{64}{4}\Rightarrow\left(-2\right)^{n+1}=16\Rightarrow\left(-2\right)^{n+1}=\left(-2\right)^4\)

\(\Rightarrow n+1=4\Rightarrow n=3\)

\(c,\left(\frac{1}{3}\right)^{n+1}=\frac{1}{81}\Rightarrow\left(\frac{1}{3}\right)^{n+1}=\left(\frac{1}{3}\right)^4\Rightarrow n+1=4\Rightarrow n=3\)

\(d,\left(\frac{3}{4}\right)^n.\frac{1}{2}=\frac{81}{512}\Rightarrow\left(\frac{3}{4}\right)^n=\frac{81}{512}:\frac{1}{2}=\frac{81}{256}\Rightarrow\left(\frac{3}{4}\right)^n=\left(\frac{3}{4}\right)^4\Rightarrow n=4\)

15 tháng 6 2019

Trả lời

a.42.53=16.125=2000

b.27.93=128.729= 93 312

c.254.28= 390 625. 256 = 1 000 000 000

d.(0,125)3.83=1

15 tháng 6 2019

Trả lời

Bài 2:

a.n=5

b.n=3.

Học tốt nha !

29 tháng 10 2016

a)

\(\left(\frac{1}{3}\right)^n\cdot27^n=3^n\)

\(\Rightarrow\left(\frac{1}{3}\cdot27\right)^n=3^n\)

\(\Rightarrow9^n=3^n\)

\(\Rightarrow\left(3^2\right)^n=3^n\)

\(\Rightarrow3^{2n}=3^n\)

\(\Rightarrow2n=n\)

\(\Leftrightarrow n=0\)

Vậy \(n=0\)

29 tháng 10 2016

d) Ta có:

\(6^{3-n}=216\)

\(\Rightarrow6^{3-n}=6^3\)

\(\Rightarrow3-n=3\)

\(\Rightarrow n=3-3\)

\(\Rightarrow n=0\)

Vậy \(n=0\)\(\text{ }\)

23 tháng 1 2020

Đặt S = 2.22 + 3.23 + 4.24 + ... + (n - 1).2n - 1 + n.2n 

<=> S = 2S - S = (2.23 + 3.24 +  4.25 + .... + (n - 1).2n + n. 2n + 1) - (2.22 + 3.23 + 4.24 + ... + (n - 1).2n - 1 + n.2n)

                S = (2.23 - 3.23) + (3.24 - 4.24) + (4.25 - 5.25) + .... + [(n - 1).2n - n.2n] + n.2n + 1 - 2.22

                   = -(23 + 24 + 25 + ... + 2n) + n.2n + 1 - 8

Đặt A = 23 + 24 + 25 + ... + 2n

  <=> 2A - A = (24 + 25 + 26 + ... + 2n + 1) - (23 + 24 + 25 + ... + 2n

  <=> A = 2n + 1 - 23 

Khi đó S = - 2n - 1 + 23 + n.2n - 1 - 8

              = 2n - 1.(n - 1) = 2n + 34

         => n - 1 = 2n + 34 : 2n - 1

          => n - 1 = 2n + 34 - n + 1

          => n - 1 = 235

          => n = 235 + 1

23 tháng 1 2020

N=34359738369 nha

22 tháng 9 2019

a) 9.27n = 35

=> 32.33n = 35

=> 32 + 3n = 35

=> 2 + 3n = 5

=> 3n = 5 -  2

=> 3n = 3

=> n = 1

b) (23 : 4).2n = 4

=> 2.2n = 4

=> 2n = 4 : 2

=> 2n = 2

=> n = 1

c) 3-2.34 . 3n = 37

=> 3-2 + 4 + n = 37

=> 32 + n = 37

=> 2 + n = 7

=> n = 7 - 2 = 5

d) 2-1.2n + 4.2n = 9.25

=> (1/2 + 4).2n = 9.25

=> 9/2.2n = 9.25

=> 2n = 9.25 : 9/2

=> 2n = 26

=> n = 6

22 tháng 9 2019

\(a,9\cdot27^n=3^5\)

\(\Rightarrow9\cdot27^n=243\)

\(\Rightarrow27^n=243:9=27\)

\(\Rightarrow27^n=27^1\)

\(\Rightarrow x=1\)

\(b,\left(2^3:4\right)\cdot2^n=4\)

\(\Rightarrow\left(8:4\right)\cdot2^n=4\)

\(\Rightarrow2\cdot2^n=4\)

\(\Rightarrow2^n=4:2=2\)

\(\Rightarrow n=1\)

\(c,3^{-2}\cdot3^4\cdot3^n=3^7\)

\(\Rightarrow3^2\cdot3^n=3^7\)

\(\Rightarrow3^n=3^7:3^2=3^5\)

\(\Rightarrow n=5\)

\(d,2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)

\(\Rightarrow2^n\cdot\left(2^{-1}+4\right)=9\cdot32\)

\(\Rightarrow2^n\cdot\frac{9}{2}=288\)

\(\Rightarrow2^n=288:\frac{9}{2}=64\)

\(\Rightarrow2^n=2^6\)

\(\Rightarrow n=6\)

8 tháng 7 2015

\(A=1+3+3^2+3^3+...+3^{101}\)

\(3A=3+3^2+3^3+3^4+...+3^{101}\)

\(3A-A=\left(3+3^2+3^3+3^4+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)

\(2A=3^{101}-1\)

\(A=\left(3^{101}-1\right):2\)

8 tháng 7 2015

Thu gọn tổng sau:

A=1+3+32+33+...+3100 

B= 2100-299-298-297-...-22-2

C= 3100-399+398-397-...+32-3+1 

3 tháng 10 2019

a) \(9.27^n=3^5\Rightarrow3^2.\left(3^3\right)^n=3^5\)

\(\Rightarrow3^2.3^{3n}=3^5\Rightarrow3^{5n}=3^5\)

\(\Rightarrow5n=5\Rightarrow n=1\)

b)\(\left(2^3:4\right).2^n=4\Rightarrow\left(2^3:2^2\right).2^n=2^2\)

\(\Rightarrow2.2^n=2^2\Rightarrow2^{1+n}=2^2\)

\(\Rightarrow1+n=2\Rightarrow n=1\)

c)\(3^2.3^4.3^n=3^7\Rightarrow3^{6+n}=3^7\)

\(\Rightarrow6+n=7\Rightarrow n=1\)

d)\(2^{-1}.2^n+4.2^n=9.2^5\)

\(\Rightarrow2^n\left(2^{-1}+4\right)=3^2.2^5\)

\(\Rightarrow\)\(2^n\left(\frac{1}{2}+4\right)=3^2.2^5\)

\(\Rightarrow\)\(2^n.\frac{3^2}{2}=3^2.2^5\)

\(\Rightarrow\)\(2^{n-1}.3^2=3^2.2^5\)

\(\Rightarrow n-1=5\Rightarrow n=6\)

e)\(243\ge3^n\ge9.3^2\)

\(\Rightarrow3^5\ge3^n\ge3^2.3^2\)

\(\Rightarrow3^5\ge3^n\ge3^4\)

\(\Rightarrow5\ge n\ge4\Rightarrow5;4\)

f)\(2^{n+3}.2^n=128\)

\(\Rightarrow2^{n+3+n}=2^7\)

\(\Rightarrow2^{2n+3}=2^7\)

\(\Rightarrow2n+3=7\Rightarrow2n=4\Rightarrow n=2\)

Hok tối

24 tháng 8 2019

a) \(\frac{1}{9}.27^n=3^n\)

\(\Leftrightarrow3^{-2}.3^{3n}=3^n\)

\(\Leftrightarrow3^{3n-2}=3^n\)

\(\Leftrightarrow3n-2=n\)

\(\Leftrightarrow2n=2\)

\(\Leftrightarrow n=1\)

24 tháng 8 2019

b)\(3^{-2}.3^4.3^n=3^7\)

\(\Leftrightarrow3^{2+n}=3^7\)

\(\Leftrightarrow2+n=7\)

\(\Leftrightarrow n=5\)