Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a3 + b3 + c3 – 3abc
Ta sẽ thêm và bớt 3a2b +3ab2 sau đó nhóm để phân tích tiếp
a3 + b3 + c3 = (a3 + 3a2b +3ab2 + b3) + c3 – (3a2b +3ab2 + 3abc)
= (a + b)3 +c3 – 3ab(a + b + c)
= (a + b + c)[(a + b)2 – (a + b)c + c2 – 3ab]
= (a + b + c)(a2 + 2ab + b2 – ac – bc + c2 – 3ab]
= (a + b + c)(a2 + b2 + c2 – ab – ac – bc)
2) x5 – 1
Ta sẽ thêm và bớt x sau đó dùng phương pháp nhóm:
x5 – 1 = x5 – x + x – 1
= (x5 – x) + (x – 1)
= x(x4 – 1) + ( x – 1)
= x(x2 – 1)(x2 + 1) + (x - 1)
= x(x +1)(x – 1)(x2 + 1) + ( x – 1)
= (x – 1)[x(x + 1)(x2 + 1) + 1].
3) 4x4 + 81
Ta sẽ thêm và bớt 36x2 sau đó nhóm các hạng tử phù hợp để có dạng hằng đẳng thức:
4x4 + 81 = 4x4 + 36x2 + 81 – 36x2
= ( 2x2 + 9)2 – (6x)2
= (2x2 + 9 – 6x)(2x2 + 9 + 6x)
a) Theo đề bài: 84 chia hết cho a và 180 chia hết cho a nên a là ƯC(84, 180) và a > 6.
Ta có: 84 = 22.3.7
180 = 22. 32.5
ƯCLN(84, 180) = 22. 3 = 12
=> a \( \in \) ƯC(84, 180) = Ư(12) = {1; 2; 3; 4; 6; 12}
Mà a > 6.
=> a = 12.
Vậy tập hợp A = {12}
b) Vì b chia hết cho 12, b chia hết cho 15, b chia hết cho 18 nên b là BC(12, 15, 18) và 0 < b <300
Ta có: \(12 = 2^2. 3; 15 = 3.5; 18 = 2.3^2\)
\(\Rightarrow BCNN(12, 15, 18) = 2^2 . 3^2.5 = 180\)
=> b\( \in \) BC(12, 15, 18) = B(180) = {0; 180; 360;...}
Mà 0 < b < 300
=> b = 180
Vậy tập hợp B = {180}
2n - 7 chia hết cho n + 4
=> 2n + 8 - 15 chia hết cho n + 4
=> 2.(n + 4) - 15 chia hết cho n + 4
=> 15 chia hết cho n + 4
=> n + 4 \(\in\)Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
=> n \(\in\){-19; -9; -8; -5; -3; -1; 1; 11}.
Ta có : n + 5
= [(n+1)+4]
nên (n+5) chia hết cho(n+1)
<=>n+1 E Ư(4) (n khác -1)
<=>n+1 E {1;-1;2;-2;4;-4}
=> n E {0;-2;1;-3;3;-5}
Để \(\left(n+5\right)⋮\left(n+1\right)\) thì \(\frac{n+5}{n+1}\)có giá trị là 1 số nguyên
Ta có: \(n+5⋮n+1\)
\(\Rightarrow n+1+4⋮n+1\)
Vì \(n+1⋮n+1\) nên \(4⋮n+1\)
\(n+1\) | -1 | -2 | -4 | 1 | 2 | 4 |
\(n\) | -2 | -3 | -5 | 0 | 1 | 3 |
Vậy, \(n\in\left\{-2;-3;=5;0;1;3\right\}\)
f/=>n thuộc ƯC(48,92,136) và n nhỏ nhất
48=24.3
92=22.23
136=23.17
=>UCLN(136;48;92)=22=4
=>n thuộc Ư(4)={-4;-2;-1;1;2;4}
=>n=-4
ta có :18=2.32; 135=32 .5.7
UCLN(18,315)=32=9
B(9)={0;9;18;27;....}
mà 5 < x ≤11
⇒x= 9 (tm)
\(a,n+6⋮n\)
\(\Rightarrow6⋮n\)
\(\Rightarrow n\inƯ\left(6\right)\)
\(\Rightarrow n\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(b,n+9⋮n+1\)
\(\Rightarrow n+1+8⋮n+1\)
\(\Rightarrow8⋮n+1\)
\(\Rightarrow n+1\inƯ\left(8\right)\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\)
\(\Rightarrow n\in\left\{-2;0;-3;1;-5;3;-9;7\right\}\)
\(c,n-5⋮n+1\)
\(\Rightarrow n+1-6⋮n+1\)
\(\Rightarrow6⋮n+1\)
\(\Rightarrow n+1\inƯ\left(6\right)\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(\Rightarrow n\in\left\{-2;0;-3;0;-4;2;-7;5\right\}\)
\(d,2n+7⋮n-2\)
\(\Rightarrow2n-4+11⋮n-2\)
\(\Rightarrow2\left(n-2\right)+11⋮n-2\)
\(\Rightarrow11⋮n-2\)
\(\Rightarrow n-2\inƯ\left(11\right)\)
\(\Rightarrow n-2\in\left\{-1;1;-11;11\right\}\)
\(\Rightarrow n\in\left\{1;3;-9;13\right\}\)