K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2016

2n+ 2n-2 = 2n + 2n : 2= 5/2

                => (2^n).2 = 5/2 . 4

                     2^n . 2 = 10

                     2^n      = 10 : 2

                     2^n      = 5

Vậy không tồn tại n

5 tháng 9 2016

\(2^n+2^{n-2}=\frac{5}{2}\)

\(2^n:2^2=\frac{5}{2}-\frac{2^n}{1}=\frac{5-2^{n+1}}{2}\)

\(2^n=\frac{5-2^{n+1}}{2}.2^2=2.\left(5-2^{n+1}\right)\)

\(2^n=10-2^{n+2}\)

14 tháng 11 2018

Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)

Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)

=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)

Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)

Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)

=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)

Ta có tổng 3 phân số là \(\frac{213}{70}\)

=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)

(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)

(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)

(=) \(\frac{k}{h}=\frac{3}{7}\)

=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)

14 tháng 11 2018

bài 3

Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)

=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)

=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)

=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)

=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)

27 tháng 5 2016

câu hỏi tương tự có

27 tháng 5 2016

Đặt \(A=\frac{7n-8}{2n-3}\), ta có:

     \(A=\frac{7n-8}{2n-3}\)

\(\Rightarrow2A=2\left(\frac{7n-8}{2n-3}\right)\) 

\(\Rightarrow2A=\frac{14n-16}{2n-3}\)

\(\Rightarrow2A=\frac{7\left(2n-3\right)+5}{2n-3}\)

\(\Rightarrow2A=\frac{7\left(2n-3\right)}{2n-3}+\frac{5}{2n-3}=7+\frac{5}{2n-3}\)

Để \(A\) đạt GTLN thì \(2A\) phải đạt GTLN

\(\Rightarrow\frac{5}{2n-3}\) đạt GTLN

\(\Rightarrow2n-3\) là số nguyên dương nhỏ nhất.

  • \(2n-3=1\Leftrightarrow2n=4\Leftrightarrow n=2\)

Vậy  phân số \(\frac{7n-8}{2n-3}\) đạt GTLN là 6 tại \(n=2\).

12 tháng 1 2018

6 là bội của n+1

=> 6 chia hết cho n+1

=> n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}

Ta có bảng :

n+1-1-2-3-61236
n-2-3-4-70125

Vậy n={-7,-4,-3,-2,0,1,2,5}

18 tháng 7

6 là bội của n+1

=> 6 chia hết cho n+1

=> n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}

Ta có bảng :

n+1 -1 -2 -3 -6 1 2 3 6
n -2 -3 -4 -7 0 1 2 5

Vậy n={-7,-4,-3,-2,0,1,2,5}

 

21 tháng 9 2019

n thuộc tập hợp -2,-3,-1,-4,4,-9,17,-22

22 tháng 9 2019

Bạn có thể phân tích cụ thể ra kô

4 tháng 3 2018

Đặt A = \(\frac{7n-8}{2n-3}=>2a=\frac{14n-16}{2n-3}=7\cdot\frac{(2n-3)+5}{2n-3=7+\frac{5}{2n-3}}\)

Để A đặt giá trị lớn nhất khi và chỉ khi 2a đạt giá trị lớn nhất khi và chỉ khi 2n-3 đặt giá trị nguyên dưng nhỏ nhất  => 2n-3 = 1 => N = 2

Vậy n=2 là giá trị lớn nhất

4 tháng 3 2018

Ta có: \(\frac{7n-8}{2n-3}=\frac{6n-9+n-1}{2n-3}=3+\frac{n+1}{2n-3}\)

\(\text{Do}:n\inℤ\Rightarrow N+1>0\Rightarrow\frac{7n-8}{2n-3}\)nhỏ nhất khi: \(\frac{n+1}{2n-3}< 0\Rightarrow2n-3< 0\Rightarrow n< \frac{2}{3}\)

+) Nếu: \(n=0\Rightarrow\frac{7n-8}{2n-3}=\frac{8}{3}\)

+) Nếu: \(n=1\Rightarrow\frac{7n-8}{2n-3}=\frac{7-8}{2-3}=1\)

\(\Rightarrow\frac{7n-8}{2n-3}\)lớn nhất khi = \(\frac{8}{3}\text{ khi}=0\)

31 tháng 7 2018

Gọi 2 số tự nhiên cần tìm là a,b 

Ta có: \(\frac{2}{3}a=\frac{3}{4}b\Rightarrow\frac{2a}{3.6}=\frac{3b}{4.6}\Rightarrow\frac{a}{9}=\frac{b}{8}\Rightarrow\frac{a^2}{81}=\frac{b^2}{64}=\frac{a^2-b^2}{81-64}=\frac{68}{17}=4\)

\(\Rightarrow\hept{\begin{cases}\frac{a^2}{81}=4\\\frac{b^2}{64}=4\end{cases}\Rightarrow\hept{\begin{cases}a^2=324\\b^2=256\end{cases}}\Rightarrow\hept{\begin{cases}a=\pm18\\b=\pm16\end{cases}}}\)

Mà a,b là số tự nhiên => a=18,b=16

31 tháng 8 2018

Gọi 2 số tự nhiên là a, b.

Theo đề bài, ta có: \(\frac{2}{3}a=\frac{3}{4}b\Rightarrow\frac{2a}{3.6}=\frac{3b}{4.6}\Rightarrow\frac{a}{9}=\frac{b}{8}\Rightarrow\frac{a^2}{81}=\frac{b^2}{64}=\frac{a^2-b^2}{81-64}=\frac{68}{17}=4\)

\(\Rightarrow\hept{\begin{cases}\frac{a^2}{81}=4\\\frac{b^2}{64}=4\end{cases}\Rightarrow\hept{\begin{cases}a^2=324\\b^2=256\end{cases}\Rightarrow}\hept{\begin{cases}a=\pm18\\b=\pm16\end{cases}}}\)

Mà a, b là số tự nhiên => a = 18, b = 16.

2 tháng 6 2015

Gọi 3 số tự nhiên cần tìm là a-2,a,a+2 
Ta có:(a-2)a+192=a(a+2) 
<->a^2-2a+192=a^2+2a 
<->192=a^2+2a-a^2+2a 
<->192=4a 
<->a=48 
-->a-2=46 
a+2=50 
Vây 3 số chẵn cần tìm là 46,48,50

11 tháng 11 2016

\(\frac{2}{3}a=\frac{3}{4}b\Rightarrow a=\frac{3}{4}b:\frac{2}{3}\Rightarrow a=\frac{9}{8}b\Rightarrow a^2=\left(\frac{9}{8}b\right)^2\Rightarrow a^2=\left(\frac{9}{8}\right)^2\cdot b^2\Rightarrow a^2=\frac{81}{64}b^2\)

Ta có: 

\(a^2-b^2=68\Rightarrow\frac{81}{64}b^2-b^2=68\Rightarrow\frac{17}{64}b^2=68\Rightarrow b^2=68:\frac{17}{64}\Rightarrow b^2=16\Rightarrow b=4\)

\(\Rightarrow a=\frac{81}{64}b=\frac{81}{64}:4=\frac{81}{16}\)

=> Vậy : \(a=\frac{81}{16};b=4\)