Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)
Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)
=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)
Ta có tổng 3 phân số là \(\frac{213}{70}\)
=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)
(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)
(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)
(=) \(\frac{k}{h}=\frac{3}{7}\)
=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)
bài 3
Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
= \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)
=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
Đặt \(A=\frac{7n-8}{2n-3}\), ta có:
\(A=\frac{7n-8}{2n-3}\)
\(\Rightarrow2A=2\left(\frac{7n-8}{2n-3}\right)\)
\(\Rightarrow2A=\frac{14n-16}{2n-3}\)
\(\Rightarrow2A=\frac{7\left(2n-3\right)+5}{2n-3}\)
\(\Rightarrow2A=\frac{7\left(2n-3\right)}{2n-3}+\frac{5}{2n-3}=7+\frac{5}{2n-3}\)
Để \(A\) đạt GTLN thì \(2A\) phải đạt GTLN
\(\Rightarrow\frac{5}{2n-3}\) đạt GTLN
\(\Rightarrow2n-3\) là số nguyên dương nhỏ nhất.
- \(2n-3=1\Leftrightarrow2n=4\Leftrightarrow n=2\)
Vậy phân số \(\frac{7n-8}{2n-3}\) đạt GTLN là 6 tại \(n=2\).
6 là bội của n+1
=> 6 chia hết cho n+1
=> n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n+1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | -2 | -3 | -4 | -7 | 0 | 1 | 2 | 5 |
Vậy n={-7,-4,-3,-2,0,1,2,5}
Đặt A = \(\frac{7n-8}{2n-3}=>2a=\frac{14n-16}{2n-3}=7\cdot\frac{(2n-3)+5}{2n-3=7+\frac{5}{2n-3}}\)
Để A đặt giá trị lớn nhất khi và chỉ khi 2a đạt giá trị lớn nhất khi và chỉ khi 2n-3 đặt giá trị nguyên dưng nhỏ nhất => 2n-3 = 1 => N = 2
Vậy n=2 là giá trị lớn nhất
Ta có: \(\frac{7n-8}{2n-3}=\frac{6n-9+n-1}{2n-3}=3+\frac{n+1}{2n-3}\)
\(\text{Do}:n\inℤ\Rightarrow N+1>0\Rightarrow\frac{7n-8}{2n-3}\)nhỏ nhất khi: \(\frac{n+1}{2n-3}< 0\Rightarrow2n-3< 0\Rightarrow n< \frac{2}{3}\)
+) Nếu: \(n=0\Rightarrow\frac{7n-8}{2n-3}=\frac{8}{3}\)
+) Nếu: \(n=1\Rightarrow\frac{7n-8}{2n-3}=\frac{7-8}{2-3}=1\)
\(\Rightarrow\frac{7n-8}{2n-3}\)lớn nhất khi = \(\frac{8}{3}\text{ khi}=0\)
Gọi 2 số tự nhiên cần tìm là a,b
Ta có: \(\frac{2}{3}a=\frac{3}{4}b\Rightarrow\frac{2a}{3.6}=\frac{3b}{4.6}\Rightarrow\frac{a}{9}=\frac{b}{8}\Rightarrow\frac{a^2}{81}=\frac{b^2}{64}=\frac{a^2-b^2}{81-64}=\frac{68}{17}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{a^2}{81}=4\\\frac{b^2}{64}=4\end{cases}\Rightarrow\hept{\begin{cases}a^2=324\\b^2=256\end{cases}}\Rightarrow\hept{\begin{cases}a=\pm18\\b=\pm16\end{cases}}}\)
Mà a,b là số tự nhiên => a=18,b=16
Gọi 2 số tự nhiên là a, b.
Theo đề bài, ta có: \(\frac{2}{3}a=\frac{3}{4}b\Rightarrow\frac{2a}{3.6}=\frac{3b}{4.6}\Rightarrow\frac{a}{9}=\frac{b}{8}\Rightarrow\frac{a^2}{81}=\frac{b^2}{64}=\frac{a^2-b^2}{81-64}=\frac{68}{17}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{a^2}{81}=4\\\frac{b^2}{64}=4\end{cases}\Rightarrow\hept{\begin{cases}a^2=324\\b^2=256\end{cases}\Rightarrow}\hept{\begin{cases}a=\pm18\\b=\pm16\end{cases}}}\)
Mà a, b là số tự nhiên => a = 18, b = 16.
Gọi 3 số tự nhiên cần tìm là a-2,a,a+2
Ta có:(a-2)a+192=a(a+2)
<->a^2-2a+192=a^2+2a
<->192=a^2+2a-a^2+2a
<->192=4a
<->a=48
-->a-2=46
a+2=50
Vây 3 số chẵn cần tìm là 46,48,50
\(\frac{2}{3}a=\frac{3}{4}b\Rightarrow a=\frac{3}{4}b:\frac{2}{3}\Rightarrow a=\frac{9}{8}b\Rightarrow a^2=\left(\frac{9}{8}b\right)^2\Rightarrow a^2=\left(\frac{9}{8}\right)^2\cdot b^2\Rightarrow a^2=\frac{81}{64}b^2\)
Ta có:
\(a^2-b^2=68\Rightarrow\frac{81}{64}b^2-b^2=68\Rightarrow\frac{17}{64}b^2=68\Rightarrow b^2=68:\frac{17}{64}\Rightarrow b^2=16\Rightarrow b=4\)
\(\Rightarrow a=\frac{81}{64}b=\frac{81}{64}:4=\frac{81}{16}\)
=> Vậy : \(a=\frac{81}{16};b=4\)
2n+ 2n-2 = 2n + 2n : 22 = 5/2
=> (2^n).2 = 5/2 . 4
2^n . 2 = 10
2^n = 10 : 2
2^n = 5
Vậy không tồn tại n
\(2^n+2^{n-2}=\frac{5}{2}\)
\(2^n:2^2=\frac{5}{2}-\frac{2^n}{1}=\frac{5-2^{n+1}}{2}\)
\(2^n=\frac{5-2^{n+1}}{2}.2^2=2.\left(5-2^{n+1}\right)\)
\(2^n=10-2^{n+2}\)