K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018

Giả sự b đúng thì => a có chữ số tận cùng là 1 

=> a + 51 = 52 ko phải số chính phương 

a - 38 = ( ...3) ko phải số chính phương 

=> a,c Sai ; b đúng 2 sia và ( Trái với đề bài ) 

Vậy b sai 

Từ đó lập luận và tìm a 

Chúc bạn học tốt

29 tháng 12 2018

Giả sự b đúng thì => a có chữ số tận cùng là 1 

=> a + 51 = 52 ko phải số chính phương 

a - 38 = ( ...3) ko phải số chính phương 

=> a,c Sai ; b đúng 2 sia và ( Trái với đề bài ) 

Vậy b sai 

17 tháng 11 2019

Bài 1: 5a+7b chia hết cho 13

=> 35a+49b chia hết cho 13

=> 5(7a+2b)+39b chia hết cho 13

Do 39b chia hết cho 13

=> 5(7a+2b) chia hết cho 13

Mà 5 vs 13 là 2 số nguyên tố cùng nhau

=> 7a+2b chia hết cho 13. (đpcm)

Bài 2:

Xét n=3 thì 1!+2!+3!=9-là SCP (chọn)

Xét n=4 thì 1!+2!+3!+4!=33 ko là SCP (loại)

Nếu n>=5 thì n! sẽ có tận cùng là 0 

=> 1!+2!+3!+4!+....+n! vs n>=5 thì sẽ có tận cùng là 3 do 1!+2!+3!+4! tận cùng =3

Mà 1 số chính phương ko thể chia 5 dư 3 (1 SỐ CHÍNH PHƯƠNG CHIA 5 DƯ 0;1;4- tính chất)

=> Với mọi n>=5 đều loại

vậy n=3. 

Bài 3:

Do 26^3 có 2 chữ số tận cùng là 76

26^5 có 2 chữ số tận cùng là 76

26^7 có 2 chữ sốtận cùng là 76

Vậy ta suy ra là 26 mũ lẻ sẽ tận cùng =76

Vậy 26^2019 có 2 chữ số tận cùng là 76.

Vì n là số có 2 chữ số

→10≤n≤99→21≤2n+1≤199

Vì 2n+1 là số chính phương→2n+1∈{25;36;49,64;81;100;121;144;169;196}

Vì 2n+1 là số lẻ→2n+1∈{25;49;81;121;169}

Ta có bảng sau:

2n+1254981121169
n1224406084
3n+13773121181253

Với n=40 thì 2n+1=81 là số chính phương và 3n+1=121 là số chính phương

Vậy n=40

14 tháng 5 2018

Vì n là số có 2 chữ số

\(\rightarrow10\le n\le99\)\(\rightarrow21\le2n+1\le199\)

Vì 2n+1 là số chính phương\(\rightarrow2n+1\in\left\{25;36;49,64;81;100;121;144;169;196\right\}\)

Vì 2n+1 là số lẻ\(\rightarrow2n+1\in\left\{25;49;81;121;169\right\}\)

Ta có bảng sau:

2n+1254981121169
n1224406084
3n+13773121181253

Với n=40 thì 2n+1=81 là số chính phương và 3n+1=121 là số chính phương

Vậy n=40