Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) 4n-5⋮2n-1
4n-2-3⋮2n-1
4n-2⋮2n-1 ⇒3⋮2n-1
2n-1∈Ư(3)
Ư(3)={1;-1;3;-3}
n∈{1;0;2;-1}
b) Ta có: \(4n-5⋮2n-1\)
\(\Leftrightarrow-3⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow2n\in\left\{2;0;4;-2\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
ta co 4n-5=2(2n-1)-3
de 4n-5 chia het cho 2n-1 =>3 chia het cho2n -1
=>* 2n -1=1=>n=1
*2n -1 =3=>n=2
vay n=1;2
Vì A = 62xy427 chia hết cho 99 => 62xy427 chia hết cho 9 và 11
+ Do 62xy427 chia hết cho 9 => 6 + 2 + x + y + 4 + 2 + 7 cha hết cho 9
=> 21 + x + y chia hết cho 9
Mà x,y là chữ số => 0 < hoặc = x + y < hoặc = 18
=> x + y thuộc {6 ; 15} (1)
+ Do 62xy427 chia hết cho 11 => (6 + x + 4 + 7) - (2 + y + 2) chia bết cho 11
=> (17 + x) - (4 + y) chia hết cho 11
=> 13 + x - y chia hết cho 11
Mà x, y là chữ số => -9 < hoặc = x - y < hoặc = 9 => x - y = -2 hoặc x - y = 9
Nhưng nếu x - y = 9 thì x = 9; y = 0, không thỏa mãn đề bài => x - y = -2
Từ (1) mà tổng 2 số và hiệu của chúng luôn có cùng tính chẵn lẻ
=> x + y = 6 => y = [6 - (-2)] : 2 = (6 + 2) : 2 = 4
=> x = 6 - 4 = 2
Lời giải:
a.
$2n+7\vdots n+2$
$\Rightarrow 2(n+2)+3\vdots n+2$
$\Rightarrow 3\vdots n+2$
$\Rightarrow n+2\in\left\{1;3\right\}$ (do $n+2>0$ với $n$ là số
tự nhiên)
$\Rightarrow n\in\left\{-1;1\right\}$
Vì $n$ là số tự nhiên nên $n=1$
b.
$4n-5\vdots 2n-1$
$\Rightarrow 2(2n-1)-3\vdots 2n-1$
$\Rightarrow 3\vdots 2n-1$
$\Rightarrow 2n-1\in\left\{1;-1;3;-3\right\}$
$\Rightarrow n\in\left\{1;0; 2; -1\right\}$
Do $n$ là số tự nhiên nên $n\in\left\{1;0;2\right\}$
a) Ta có: \(4n-5⋮2n-1\)
\(\Leftrightarrow4n-2-3⋮2n-1\)
mà \(4n-2⋮2n-1\)
nên \(-3⋮2n-1\)
\(\Leftrightarrow2n-1\inƯ\left(-3\right)\)
\(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow2n\in\left\{2;0;4;-2\right\}\)
\(\Leftrightarrow n\in\left\{1;0;2;-1\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1;2\right\}\)
Vậy: Để \(4n-5⋮2n-1\) thì \(n\in\left\{0;1;2\right\}\)
a) 4n - 5=2( 2n - 1 ) - 3
4n - 5 chia hết cho 2n - 1 ⇒ 3 phải chia hết cho 2n - 1
⇒2n-1 là Ư(3)={-1,1,-3,3)
⇒n = {1;2}
b) 62xy427 chia hết cho 99
⇒62xy427 chia hết cho 11 và 9
B chia hết cho 9 ( 6+2+x+y+4+2+7) chia hết cho 9⇒21 + x + y chia hết cho 9
⇒ x + y = 6 hoặc x + y = 15
B chia hết cho 11 ( 7+4+x+6-2-2-y) chia hết cho 11⇒13+x-y chia hết cho 11
+) x-y=9( loại) và y-x=2
y-x=2 và x+y=6⇒ x=2; y=4
+) y-x = 2 và x+y=15( loại)
Vậy B = 6224427.
1) 2n+7=2(n+1)+5
để 2n+7 chia hết cho n+1 thì 5 phải chia hết cho n+1
=> n+1\(\in\) Ư(5) => n\(\in\){...............}
bạn tự tìm n vì mình chưa biết bạn có học số âm hay chưa
Từ bài 2-> 4 áp dụng như bài 1
Ta có 2n+7=2(n+1)+5
Vì 2(n+1
Do đó 2n + 7=2(n+1)+5 khi 5 chí hết cho n +1
Suy ra n+1 "thuộc tập hợp" Ư (5) = {1;5}
Lập bảng n+1 I 1 I 5
n I 0 I 4
Vậy n "thuộc tập hợp" {0;4}
\(4n-5⋮2n-1\)
\(\Rightarrow4n-2-3⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)+3⋮2n-1\)
mà \(2\left(2n-1\right)⋮2n-1\)
\(\Rightarrow3⋮2n-1\Rightarrow2n-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(2n-1=1\Rightarrow n=1\left(TM\right)\)
\(2n-1=-1\Rightarrow n=0\left(TM\right)\)
\(2n-1=3\Rightarrow n=2\left(TM\right)\)
\(2n-1=-3\Rightarrow n=-1\left(loại\right)\)
\(\Rightarrow n\in\left\{0;2;1\right\}\)
Sao thầy giảng cho mk chỉ có kết quả là {1;2} vậy