\(^n\)với A = 3 + 3\(^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2018

ta có: A = 3 + 3^2 + 3^3 + ....+ 3^100

=> 3A = 3^2 + 3^3 + 3^4 + ...+ 3^101

=> 3A-A = 3^101 - 3

2A = 3^101 - 3

=> 2A + 3 = 3^101

mà 2A + 3 = 3^n

=> n = 101

4 tháng 9 2016

Ta có : A = 3 + 32 + 33 + .... + 3100

=> 3A = 32 + 33 + .... + 3101

=> 3A - A = 3101 - 3

=>2A = 3101 - 3

=> 2A + 3 = 3101

Vậy n = 101

4 tháng 9 2016

A=3+32+33+...+3100

3A=32+33+34+...+3101

3A-A=32+33+34+...+3101-(3+32+33+...+3100)

2A=3101-3

\(\Rightarrow\)2A+3=3101

Vậy 2A+3=3101

21 tháng 7 2016

A = 3 + 32 + 33 + ... + 399 + 3100

3A = 32 + 33 + 34 + ... + 3100 + 3101

3A - A = (32 + 33 + 34 + ... + 3100 + 3101) - (3 + 32 + 33 + ...+ 399 + 3101)

2A = 3101 - 3

3n = 2A + 3 = 3101 - 3 + 3 = 3101

n = 101

Chúc bạn học tốt ^^

21 tháng 7 2016

A = 3 + 32 +..... + 3100 
3A = 32 + 33 + .... + 3101 
3A - A = ( 32 + 33 + .... + 3101 ) - ( 3 + 32 +..... + 3100  )
2A = 3101 - 3
2A + 3 = 3n = 3101 
=> n = 101
Chúc bạn học tốt !

 

25 tháng 10 2017

n=2018 nha

k mk minh noi cach giai cho :)

thx

25 tháng 10 2017

n=2018

tớ đồng ý với tienvu6a3

19 tháng 10 2017

\(A=3+3^2+3^3+.........+3^{100}\)

\(\Leftrightarrow3A=3^2+3^3+.........+3^{100}+3^{101}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+.....+3^{101}\right)-\left(3+3^2+......+3^{100}\right)\)

\(\Leftrightarrow2A=3^{101}-3\)

\(\Leftrightarrow2A+3=3^{101}\)

\(2A+3=3^n\)

\(\Leftrightarrow3^{101}=3^n\)

\(\Leftrightarrow n=101\)

Vậy ..

19 tháng 10 2017

A = 3 + 32 + 33 + ... + 3100

\(\Rightarrow\) 3A = 32 + 33 + 34 + ... + 3101

\(\Rightarrow\) 3A - A = (32 + 33 + 34 + ... + 3101) - (3 + 32 + 33 + ... + 3100)

\(\Rightarrow\) 2A = 3101 - 3

\(\Rightarrow\) 2A + 3 = 3101

\(\Rightarrow\) 3101 = 3n

\(\Rightarrow\) n = 101

16 tháng 6 2016

\(3B=3^2+3^3+3^4+....+3^{101}\)

\(2B=3^{101}-3\)

\(B=\frac{3^{101}-3}{2}\)

\(=>2B=3^{101}-3\)

\(=>2b+3=3^{101}\)

\(=>n=101\)

17 tháng 1 2017

3A=32+33+34+...+32010

3A-A=32010-3

2A=32010-3

=>2A+3=32010

Vậy n=2010

17 tháng 1 2017

A = 3 + 32 + 33 + ... + 32009

3A = 32 + 33 + 34 + ... + 32010

3A - A = (32 + 33 + 34 + ... + 32010) - (3 + 32 + 33 + ... + 32009)

2A = 32010 - 3 

=> 2A + 3 = (32010 - 3) + 3 = 32010 = 3n

=> n = 2010

2 tháng 7 2017

Ta có :

\(A=1+3+3^2+...................+3^{10}\)

\(\Leftrightarrow3A=3+3^2+..................+3^{10}+3^{11}\)

\(\Leftrightarrow3A-A=\left(3+3^2+.............+3^{11}\right)-\left(1+3+.................+3^{10}\right)\)

\(\Leftrightarrow2A=3^{11}-1\)

\(\Leftrightarrow2A+1=3^{11}\)

\(\Leftrightarrow3^{11}=3^n\)

\(\Leftrightarrow n=11\left(TM\right)\)

Vậy \(n=11\) là giá trị cần tìm

2 tháng 7 2017

\(A=1+3+3^2+3^3+...+3^{10}\)

\(3A=3\left(1+3+3^2+3^3+...+3^{10}\right)\)

\(3A=3+3^2+3^3+3^4+...+3^{11}\)

\(A=1+3+3^2+3^3+...+3^{10}\)

\(2A=3^{11}-1\)

\(2A+1=3^{11}\)

\(2A+1=3^n\)

\(\Rightarrow\) n = 11

Vậy n = 11

27 tháng 8 2016

3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^11

3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^11) - (1 + 3 + 3^2 + 3^3 + ... + 3^10)

2A = 3^11 - 1

2A + 1 = 3^11 = 3^n

=> n = 11

20 tháng 8 2016

Bài làm

a) Ta có:

\(A=\)\(3+3^2+3^3+...+3^{2009}\)

\(3A=3^2+3^3+3^4+...+3^{2010}\)

\(3A-A=2A=\left(3^2+3^3+3^4+...+3^{2010}\right)-\left(3+3^2+3^3+...+3^{2009}\right)\)

\(2A=3^{2010}-3\)

Từ đó

=> \(2A+3=3^{2010}-3+3=3^{2010}\)

=> n = 2010