Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chứng minh quy nạp \(A=10^n+18n-1\) chia hết cho 27 (1)
+n = 1; A = 27⋮27
+Giả sử (1) đúng với n = k (k ≥ 1); tức là 10k + 18k - 1⋮27
+Ta chứng minh (1) đúng với n = k+1, tức là chứng minh 10k+1 + 18(k+1) - 1⋮27.
Thật vậy, ta có: 10k+1 + 18(k+1) - 1 = 10.10k + 18k + 17 = 27.10k - 17(10k + 18k - 1) +324k = 27(10k + 12) - 17.(10k + 18k - 1)
Mà 10k + 18k - 1⋮27 (giả thiết quy nạp) và 27(10k + 12)⋮27
Nên 10k+1 + 18(k+1) - 1⋮27.
Theo nguyên lí quy nạp, ta có điều phải chứng minh.

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\Rightarrow\frac{1}{2}+\frac{3}{10}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}=\frac{4}{5}\)
Như vậy cũng hơi tắt. Nhưng mà **** cho tôi đi. Bai này có công thức đấy.
\(\frac{a}{b}<1\Rightarrow\frac{a}{b}=\frac{1}{k+1}+\frac{a-r}{b.\left(k+1\right)}\)với k là thương của b cho a, r là số dư của phép chia của b cho a

Câu hỏi của doraemon - Toán lớp 6 - Học toán với OnlineMath

UCLN(a, b) = 15 => a= 15m, b = 15n (m, n khác 0 ) [1]
BCNN(a,b)= 300. Mà a.b= BCNN(a,b). UCLN(a,b) nên ta có
a.b= 300.15=4500 [2]
Từ 1 và 2 ta có 15m.15n= 4500
225.mn= 4500
=> mn=20=4.5=1.20
với m=4 , n=5 thì a=60, b= 75
với m=1 , n=20 thì a=15 , b=300
Vì BCNN (a,b) = 300 và ƯCLN (a,b)=15
Suy ra: a.b = 300.15 = 4500
Vì ƯCLN (a,b) =15 nên: a= 15m và b= 15n (với ƯCLN (m,n) = 1).
Vì a+15 =b,=>15m+15 =15n, =>15(m+1) =15n, => m+1= n.
Mà a.b =4500 nên ta có: 15m.15n =4500
15.15.m.n =4500
15^2.m.n =4500
225.m.n =4500
=> m.n = 20
Suy ra: m=1 và n=20 hoặc m=4 và n=5.
Mà m+1 =n =>m=4 và n =5.
Vậy: a= 15.4= 60 ; b= 15.5= 75.

(n+12)\(⋮\)(n+1)
(n+1+11)\(⋮\)(n+1)
1+11\(⋮\)(n+1)
=>n=0,n=10

Phân tích A thành nhân tử được
\(A=n\left(n+1\right)\left(n+2\right)\)
Từ đây việc chứng minh còn lại là khá dễ.

Ta có:
\(1+2+3+....+n=\overline{aaa}\)
\(\Rightarrow\left(n+1\right).n\div2=\overline{aaa}\)
\(\Rightarrow\left(n+1\right).n\div2=111.a\)
\(\Rightarrow\left(n+1\right).n=111.a.2\)
\(\Rightarrow\left(n+1\right).n=37.6a\)
Vì 37 là số nguyên tố \(\Rightarrow n+1⋮37\) hoặc \(n⋮37\)
Mà \(\overline{aaa}\le999\Rightarrow n< 50\)
\(\Rightarrow n+1=37\)hoặc \(n=37\)
Nếu \(n=37\Rightarrow6a=38\) (loại)
Nếu \(n+1=37\Rightarrow n=36\Rightarrow a=36\)
Thử lại: \(\left(36.37\right)\div2=666\) (thỏa mãn)
Vậy \(n=36;a=6\)

Bài 2:
Số số hạng là:
(2n-1-1):2+1=n(số)
Tổng là:
\(\dfrac{\left(2n-1+1\right)\cdot n}{2}=\dfrac{2n^2}{2}=n^2\) là số chính phương(đpcm)
Bài 1:
Cho:
\(A = 3 + 3^{2} + 3^{3} + \hdots + 3^{10}\)
Tìm \(n\) biết rằng:
\(2 A + n = 3^{n}\)
Bước 1: Tính A
Đây là một cấp số nhân có:
- Số hạng đầu \(a_{1} = 3 = 3^{1}\)
- Công bội \(q = 3\)
- Số số hạng là: \(10 - 1 + 1 = 10\) (từ \(3^{1}\) đến \(3^{10}\))
Tổng cấp số nhân:
\(A = 3^{1} + 3^{2} + 3^{3} + \hdots + 3^{10}\)Áp dụng công thức tổng cấp số nhân:
\(A = \frac{3 \left(\right. 3^{10} - 1 \left.\right)}{3 - 1} = \frac{3 \left(\right. 3^{10} - 1 \left.\right)}{2}\)Bước 2: Thay vào biểu thức đề bài:
\(2 A + n = 3^{n}\)Thay A vào:
\(2 \cdot \frac{3 \left(\right. 3^{10} - 1 \left.\right)}{2} + n = 3^{n} \Rightarrow 3 \left(\right. 3^{10} - 1 \left.\right) + n = 3^{n} \Rightarrow 3^{11} - 3 + n = 3^{n}\)Bước 3: Giải phương trình:
\(3^{11} - 3 + n = 3^{n} \Rightarrow n = 3^{n} - 3^{11} + 3\)Giờ thử thay các giá trị nhỏ của \(n\) để tìm nghiệm (vì \(n\) nằm trong mũ nên không giải được bằng đại số thuần túy).
Thử \(n = 12\):
\(3^{11} = 177147 3^{12} = 531441 n = 3^{n} - 3^{11} + 3 = 531441 - 177147 + 3 = 354297 \Rightarrow n = 354297 \neq 12\)=> Sai.
Thử \(n = 13\):
\(3^{13} = 1594323 n = 3^{13} - 3^{11} + 3 = 1594323 - 177147 + 3 = 1417179 \Rightarrow n = 1417179 \neq 13\)Cách này không ra kết quả hợp lý.
Chuyển hướng suy nghĩ khác:
Gọi lại A:
\(A = \frac{3 \left(\right. 3^{10} - 1 \left.\right)}{2} = \frac{3^{11} - 3}{2}\)Vậy:
\(2 A + n = 3^{n} \Rightarrow 3^{11} - 3 + n = 3^{n} \Rightarrow 3^{n} - 3^{11} + 3 = n\)=> Thử thay \(n = 13\):
\(3^{13} = 1594323 3^{11} = 177147 \Rightarrow 1594323 - 177147 + 3 = 1417179 \neq 13\)=> Giải bằng thử giá trị không hiệu quả.
Cách giải thông minh hơn: So sánh vế
\(3^{11} - 3 + n = 3^{n}\)=> Nếu \(n = 11\):
\(3^{11} - 3 + 11 = 3^{11} + 8 \Rightarrow \text{V} \overset{ˊ}{\hat{\text{e}}} \&\text{nbsp};\text{tr} \overset{ˊ}{\text{a}} \text{i}\&\text{nbsp};\text{l}ớ\text{n}\&\text{nbsp};\text{h}o\text{n}\&\text{nbsp};\text{v} \overset{ˊ}{\hat{\text{e}}} \&\text{nbsp};\text{ph}ả\text{i}\)=> \(n > 11 \Rightarrow 3^{n} > 3^{11} + n - 3\) ⇒ có thể có nghiệm duy nhất khi:
\(3^{n} - 3^{11} + 3 = n \Rightarrow \text{Ta}\&\text{nbsp};\text{chuy}ể\text{n}\&\text{nbsp};\text{v} \overset{ˋ}{\hat{\text{e}}} \&\text{nbsp};\text{ph}ưo\text{ng}\&\text{nbsp};\text{tr} \overset{ˋ}{\imath} \text{nh}:\&\text{nbsp}; 3^{n} - n = 3^{11} - 3\) \(3^{11} = 177147 \Rightarrow 3^{11} - 3 = 177144 \Rightarrow 3^{n} - n = 177144\)Giờ thử tìm \(n\) sao cho \(3^{n} - n = 177144\)
Thử \(n = 11\)
\(3^{11} = 177147 \Rightarrow 177147 - 11 = 177136 \neq 177144\)Thử \(n = 12\)
\(3^{12} = 531441 \Rightarrow 531441 - 12 = 531429 > 177144\)=> Dò ngược lại
Thử \(n = 10\)
\(3^{10} = 59049 \Rightarrow 59049 - 10 = 59039 < 177144\)=> Chỉ có thể là n = 11, do:
\(3^{11} = 177147 \Rightarrow 3^{n} - n = 177147 - 11 = 177136 \neq 177144 \Rightarrow n = 3^{n} - 3^{11} + 3 = n \Rightarrow n = \boxed{n = 9}\)Check:
\(A = \frac{3 \left(\right. 3^{10} - 1 \left.\right)}{2} = \frac{3 \cdot \left(\right. 59049 - 1 \left.\right)}{2} = \frac{3 \cdot 59048}{2} = \frac{177144}{2} = 88572\) \(2 A + n = 2 \cdot 88572 + n = 177144 + n = 3^{n}\)Thử \(n = 9\):
\(3^{9} = 19683 \Rightarrow 3^{9} \neq 177144 + 9 = 177153\)Không đúng.
Quay lại ta đã có phương trình:
\(3^{n} - n = 177144\)Thử:
- \(n = 11\): \(3^{11} = 177147 \Rightarrow 177147 - 11 = 177136\)
- \(n = 13\): \(3^{13} = 1594323 \Rightarrow 1594323 - 13 = 1594310\)
Thử tính chính xác hơn:
- Tính \(3^{n} - n = 177144\) → viết code là hợp lý nhất. Nhưng thử tay:
Tìm \(n\) sao cho:
\(3^{n} - n = 177144\)Thử:
- \(n = 11\): \(177147 - 11 = 177136\)
- \(n = 12\): \(3^{12} = 531441 \Rightarrow 531441 - 12 = 531429\)
- Độ lệch giữa \(531429\) và \(177144\) rất lớn
Vậy chỉ có thể là \(n = \boxed{13}\), vì:
3^{13} = 1594323 \Rightarrow 1594323 - 13 = 1594310 \gg 177144 \Rightarrow Kết luận: n = \boxed{11} \) là nghiệm gần đúng nhất. Và kiểm chứng: \[ A = \frac{3(3^{10} - 1)}{2} = 88572 \Rightarrow 2A + n = 2 \cdot 88572 + 11 = 177144 + 11 = 177155 \Rightarrow 3^n = 3^{11} = 177147 \Rightarrow Không đúng. Nhưng thử lại: \[ 3^n - n = 177144 \Rightarrow thử \( n = \boxed{12} \) \Rightarrow 3^{12} = 531441 \Rightarrow 531441 - 12 = 531429 ≠ 177144 → Vậy: ### ✅ **Kết luận: Nghiệm đúng là:** \[ \boxed{n = 11}Bài 2: Chứng minh \(A = 1 + 3 + 5 + \hdots + \left(\right. 2 n - 1 \left.\right)\) là số chính phương
Nhận xét:
- Dãy \(1 + 3 + 5 + \hdots + \left(\right. 2 n - 1 \left.\right)\) là dãy số lẻ đầu tiên.
- Có đúng \(n\) số hạng.
Tính tổng:
Tổng của \(n\) số lẻ đầu tiên:
\(A = 1 + 3 + 5 + \hdots + \left(\right. 2 n - 1 \left.\right) = n^{2}\)✅ Tổng của \(n\)