Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
10 ≤ n ≤ 99
<=> 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên 2n+1∈ {25;49;81;121;169}
<=> n ∈{12;24;40;60;84}
<=> 3n+1∈{37;73;121;181;253}
<=> n=40
Để giải bài này ta dùng phương pháp chặn em nhé.
Vì n là số tự nhiên có hai chữ số nên 10 ≤ n ≤ 99
⇒ 3 \(\times\) 10 - 2 ≤ 3n - 2 ≤ 3 \(\times\) 99 - 2
⇒ 28 ≤ 3n - 2 ≤ 295
Vì 3n - 2; 2n - 1 đều là số chính phương nên ta có:
3n - 2 = m2
2n - 1 = k2 ( k, m \(\in\) N)
Trừ vế với vế ta có n - 1 = m2 - k2 ⇒ 2(n-1) = 2(m2 - k2)
⇒2n - 1 - 1 = 2m2 - 2k2
⇒ k2 - 1 = 2m2 - 2k2
⇒ 3k2 = 2m2 + 1
⇒ k2 = (2m2 + 1)/3
28 ≤ 3n - 2 ≤ 295
28 ≤ m2 ≤ 295
⇒ 6 ≤ m ≤ 17
2m2 + 1 ⋮ 3 ⇒ m2 không chia hết cho 3
⇒ m \(\in\) { 7; 8; 10; 11; 13; 14; 16; 17}
Với m = 7 ⇒ k2 = ( 2.49 + 1)/3 = 33 (loại)
m = 8 ⇒ k2 = (2.64 +1)/3 = 43 (loại)
m = 10 ⇒ k2 = (2.100 +1)/3 = 67 (loại)
m = 11 ⇒ k2 = ( 2. 121 +1)/3 = 81 (thỏa mãn)
m = 13 ⇒ k2 = ( 2.169 + 1)/3 =113 (loại)
m = 14 ⇒ k2 = (2. 196 + 1)/3 = 131 (loại)
m = 16 ⇒ k2 = ( 2.256 +1)/3 = 171 (loại)
m = 17 ⇒ k2 = (2.289 +1)/3 = 193 (loại)
Vậy m = 11 ⇒ 3n - 2 = 112 = 121 ⇒ 3n = 121 + 2 = 123
⇒ n = 123 : 3 = 41
Kết luận n = 41
$2n+1$ và $3n+1$ là các số chính phương
$⇒\begin{cases}2n+1=a^2\\3n+1=b^2\end{cases}$ với $a;b∈N$
$⇒5n+2=a^2+b^2$
Lại có: một số chính phương chia 5 chỉ có số dư là $0;1$ hoặc $4$
Nên $a^2+b^2$ chỉ có thể $\equiv 0;1;4;2;3(mod 5)$
Mà $5n+2 \equiv 2(mod 5)$
$⇒\begin{cases}a^2 \equiv 1(mod 5)\\b^2 \equiv 1(mod 5)\end{cases}$
Nên $2n+1 \equiv 1 (mod 5)⇒2n \vdots 5$ Mà $(2;5)=1$
$⇒n \vdots 5$
Ta có: $2n+1=a^2⇒a^2$ lẻ
Mà số chính phương lẻ chia 4 chỉ có thể dư 1 nên
$2n+1 \equiv 1 (mod 4)$
Hay $2n \vdots 4$
$⇒n \vdots 2$
$⇒3n+1$ lẻ
Xét với $a=2k+1(k∈N)$ có $a^2=(2k+1)^2=4k^2+4k+1=4k(k+1)+1$
Mà $4k(k+1) \vdots 8$ nên $a^2 \vdots 1 (mod 8)$
nên ta có thể thấy số chính phương lẻ chia 8 dư 1
Mà $3n+1=b^2$ là số chính phương lẻ
$⇒3n+1 \equiv 1(mod 8)$
$⇒3n \vdots 8$
Mà $(3;8)=1$
Nên $n \vdots 8$
Lại có $n \vdots 5$
$(5;8)=1$
$⇒n \vdots 5.8=40$
Hay $n$ chia hết cho 40 mà $n$ có 2 chữ số
$⇒n=40$ hoặc $n=80$
với $n=80⇒$ Loại do thay vào ko t/m
$n=40$ thỏa mãn
Vậy $n=40$ thỏa mãn đề
\(10\le n\le99\Leftrightarrow21\le2n+1\le201\)
\(2n+1\) là số chính phương lẻ nên
\(2n+1\in\left\{25;49;81;121;169\right\}\)
\(\Leftrightarrow n\in\left\{12;24;40;60;84\right\}\)
\(\Leftrightarrow3n+1\in\left\{37;73;121;181;253\right\}\)
\(\Leftrightarrow n=40\)
n là số có 2 chữ số => 9 < n < 100 => 19 < 2n + 1 < 201 mà 2n + 1 là số chính phương, lẻ nên 2n + 1 có thể bằng: 25; 49; 81; 121;169;
2n + 1 = 25 => n = 12 => 3n + 1= 37 ko là số cp => loại
2n + 1= 49 => n = 24 => 3n + 1 = 73 => loại
2n+ 1= 81 => n = 40 => 3n + 1= 121 thoả mãn. làm tương tự
......
KL: n = ....
- Với \(n=0\Rightarrow3^n+3=4\) là SCP (thỏa mãn)
- Với \(n=1\Rightarrow3^n+3=6\) ko là SCP
- Với \(n>1\Rightarrow n\ge2\) \(\Rightarrow3^n⋮9\)
Mà \(3⋮̸9\Rightarrow3^n+3⋮̸9\)
\(\Rightarrow3^n+3\) chia hết cho 3 mà ko chia hết cho 9
\(\Rightarrow3^n+3\) ko thể là SCP với \(n>1\)
Vậy \(n=0\) là giá trị duy nhất thỏa mãn yêu cầu đề bài