Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{n+4}{n-1}=\frac{\left(n-1\right)+5}{n-1}=\frac{n-1}{n-1}+\frac{5}{n-1}=1+\frac{5}{n-1}\)
Để \(n+4⋮n-1\Leftrightarrow\frac{5}{n-1}\in N\Leftrightarrow5⋮n-1\Leftrightarrow n-1\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)
* Với n - 1 = -1 => n = -1 + 1 = 0 ( thỏa mãn )
* Với n - 1 = 1 => n = 1+ 1 = 2 ( thỏa mãn )
* Với n - 1 = -5 => n = -5 + 1 = -4 ( ko thỏa mãn )
* Với n - 1 = 5 => n = 5 + 1 = 6 ( thỏa mãn )
Vậy với n \(\in\) { 0; 2; 6 } thì n + 4 \(⋮\)n - 1
Các bài còn lại bn làm tương tự như vậy
a,
Theo bài ra ta có: 2n +5 chia hết cho n+2
Mà 2n chia hết cho n
Suy ra: ( 2n +5)- 2(n+2) chia hết cho n+2
2n +5 - 2n-2 chia hết cho n+2
3 chia hết cho n+2
Suy ra: n+2 thuộc Ư(3) = { 1,3}
Ta có :
n+2=1 ( phép tính ko thực hiện được)
n+2=3 vậy n=1
Vậy ta có số tự nhiên n là 1
các câu trên dễ rồi tự giải nhé mk chỉ giải của d thôi
d, n^2 + 7 chia hết cho n+1 (1)
n+1 chia hết cho n+1
=> (n-1)(n+1) chia hết cho n+1
=> n^2 -1 chia hết cho n+1 (2)
từ (1) và (2)
=> n^2+7 - n^2 +1 chia hết cho n+1
=> 8 chia hết cho n+1
=> n+1 thuộc ước của 8
=> n+1 ={ 1,2,4.-1.-2.-4}
=> n={ 0,1,3,-2,-3,-5}
thử lại nhé ( vì đây là giải => nên phải thử lại nha)
từ đề bài bạn sẽ có: (2n^2 + 3n + 1) + 2(2n + 3) chia hết cho 2n + 3. Vì 2(2n + 3) chia hết cho 2n + 3 => 2n^2 + 3n + 1 chia hết cho 2n + 3
Hay, bạn sẽ có 2n^2 + 2n + n + 1 = 2n(n +1) + (n+1) = (n+1)(2n +1) chia hết cho 2n + 3. đặt 2n + 3 = a (a khác 0)từ đó bạn sẽ có ((a -1)/2)(a -2) chia hết cho a. ở => (a-1)(a-2)/2 chia hết cho a.
bạn nhận thấy : (a-1)(a-2) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2 => (a-1)(a-2)/2 là số nguyên (với a là 2 số tự nhiên liên tiếp)
xét 2 trường hợp: a = 1 và a = 2 là bạn sẽ tìm ra n