Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(2^m+2^n=2^{m+n}\)
\(\Leftrightarrow\frac{2^m+2^n}{2^{m+n}}=1\)
\(\Leftrightarrow\frac{1}{2^n}+\frac{1}{2^m}=1\)
+) Xét \(m=0\Rightarrow\frac{1}{2^0}+\frac{1}{2^n}>1\) ( loại )
+) Xét \(m=1\Rightarrow\frac{1}{2^m}=\frac{1}{2}\Rightarrow n=1\) ( thỏa mãn)
+) Xét \(m>1\Rightarrow\frac{1}{2^m}< \frac{1}{2},\frac{1}{2^n}< \frac{1}{2}\Rightarrow\frac{1}{2^m}+\frac{1}{2^n}< 1\) ( Do n là số tự nhiên, loại )
Vậy : \(m=1,n=1\) thỏa mãn đề.
\(2^m+2^n=2^{m+n}\)\(\Leftrightarrow2^{m+n}-\left(2^m+2^n\right)=0\)
\(\Leftrightarrow2^{m+n}-2^m-2^n=0\)\(\Leftrightarrow\left(2^{m+n}-2^m\right)-2^n+1=1\)
\(\Leftrightarrow2^m\left(2^n-1\right)-\left(2^n-1\right)=1\)\(\Leftrightarrow\left(2^m-1\right)\left(2^n-1\right)=1\)
Vì m , n là số tự nhiên \(\Rightarrow2^m-1\)và \(2^n-1\)cũng là số tự nhiên
\(\Rightarrow\hept{\begin{cases}2^m-1=1\\2^n-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}2^m=2\\2^n=2\end{cases}}\Leftrightarrow m=n=1\)
Vậy \(m=n=1\)
a. \(\left(\frac{-1}{5}\right)^n=\frac{-1}{125}\)
<=> \(\left(\frac{-1}{5}\right)^n=\left(\frac{-1}{5}\right)^3\)
<=> n = 3
b. \(\left(\frac{-2}{11}\right)^m=\frac{4}{121}\)
<=> \(\left(\frac{-2}{11}\right)^m=\left(\frac{2}{11}\right)^2\)
<=> m = 2
c. 72n + 72n+2 = 2450
<=> 72n + 72n . 72 = 2450
<=> 72n.(1+72) = 2450
<=> 72n = 72
<=> 2n = 2
<=> n = 1
Bài 2:
a: \(9^{20}=81^{10}\)
mà 81<9999
nên \(9^{20}< 9999^{10}\)
b: \(9^{20}=3^{40}\)
\(27^{13}=3^{39}\)
mà 40>39
nên \(9^{20}>27^{13}\)
\(2^n+2^{n-2}=\frac{5}{2}\)
\(\Leftrightarrow2^n\left(1+2^{-2}\right)=\frac{5}{2}\)
\(\Leftrightarrow2^n\left(1+\frac{1}{4}\right)=\frac{5}{2}\)
\(\Leftrightarrow2^n\cdot\frac{5}{4}=\frac{5}{2}\)
\(\Rightarrow2^n=\frac{5}{2}:\frac{5}{4}=2\)
\(\Rightarrow n=1\)
Ta có: \(2^n+2^{n-2}=\frac{5}{2}\Rightarrow2^n\left(1+\frac{1}{4}\right)=\frac{5}{2}.\)
\(\Rightarrow2^n\cdot\frac{5}{4}=\frac{5}{2}\Rightarrow2^n=\frac{5}{2}:\frac{5}{4}=2\Rightarrow n=1\)
Câu 1:
Ta có: \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2=\left(x-1\right)^x\cdot\left(x-1\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2=\left(x-1\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2-\left(x-1\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left[1-\left(x-1\right)^2\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left[1-\left(x-1\right)\right]\cdot\left[1+\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(1-x+1\right)\cdot\left(1+x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(2-x\right)\cdot x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\2-x=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x=2\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
Vậy: x\(\in\){0;1;2}
Câu 2:
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\left(y-3\right)^2\ge0\forall y\)
Do đó: \(\left(x+2\right)^2+2\left(y-3\right)^2\ge0\forall x,y\)
mà \(\left(x+2\right)^2+2\left(y-3\right)^2< 4\)
và các số chính phương nhỏ hơn 4 là 0 và 1
nên \(\left(x+2\right)^2+2\left(y-3\right)^2\in\left\{0;1;2\right\}\)
*Trường hợp 1: (x+2)2=2(y-3)2=0
\(\Leftrightarrow\left(x+2\right)^2+2\left(y-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)
*Trường hợp 2: \(\left(x+2\right)^2=0\) và \(\left(y-3\right)^2=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\\left[{}\begin{matrix}y-3=1\\y-3=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\\left[{}\begin{matrix}y=4\\y=2\end{matrix}\right.\end{matrix}\right.\)
*Trường hợp 3: \(\left(x+2\right)^2=1\) và \(\left(y-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+2=1\\x+2=-1\end{matrix}\right.\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\\y=3\end{matrix}\right.\)
Vậy: (x,y)\(\in\){(-2;3);(-2;4);(-2;2);(-1;3);(-3;3)}
Câu 1 bạn làm nhầm rồi.
$(x-1)^x(x-1)^2=(x-1)^x(x-1)^4$ không tương đương với $(x-1)^2=(x-1)^4$
Mà từ đây suy ra \(\left[\begin{matrix} (x-1)^x=0\\ (x-1)^2=(x-1)^4\end{matrix}\right.\)
Đối với TH $(x-1)^x=0$ thì có thể xảy ra 2TH: $x-1=0$ hoặc $x=0$
Nhận xét:
+) Với x \(\geq\) 0 thì | x | + x = 2x
+) Với x < 0 thì | x | + x = 0
Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z
Áp dụng nhận xét trên thì :
| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z
\(\implies\) 2m + 2015 là số chẵn
\(\implies\) 2m là số lẻ
\(\implies\) m = 0
Khi đó:
| n - 2016 | + n - 2016 = 2016
+) Nếu n < 2016 ta được:
- ( n - 2016 ) + n - 2016 =2016
\(\implies\) 0 = 2016
\(\implies\) vô lí
\(\implies\) loại
+) Nếu n \(\geq\) 2016 ta được :
( n - 2016 ) + n - 2016 = 2016
\(\implies\) n - 2016 + n - 2016 = 2016
\(\implies\) 2n - 2 . 2016 = 2016
\(\implies\) 2 ( n - 2016 ) = 2016
\(\implies\) n - 2016 = 2016 : 2
\(\implies\) n - 2016 = 1008
\(\implies\) n = 1008 + 2016
\(\implies\) n = 3024
\(\implies\) thỏa mãn
Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }