K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

Ta có:

(n2−8)2+36

=n4−16n2+64+36

=n4+20n2+100−36n2

=(n2+10)2−(6n)2

=(n2+10+6n)(n2+10−6n)

Mà để (n2+10+6n)(n2+10−6n) là số nguyên tố thì n2+10+6n=1 hoặc n2+10−6n=1

Mặt khác ta có n2+10−6n<n2+10+6n  n2+10−6n=1 (n thuộc N) 

 n2+9−6n=0 hay (n−3)2=0  n=3

Vậy với n=3 thì (n2−8)2+36 là số nguyên tố
_________________

9 tháng 1 2016

sorry em mới lớp 6 

AH
Akai Haruma
Giáo viên
10 tháng 2 2017

Lời giải:

Nếu $n$ chẵn thì \(n^4+4^n\) chẵn. Hiển nhiên \(n\neq 0\) nên \(n^4+4^n>2\). Do đó \(n^4+4^n\) không thể là số nguyên tố

Nếu $n$ lẻ:

\(n^4+4^n=(n^2+2^n)^2-2^{n+1}n^2=(n^2+2^n-2^{\frac{n+1}{2}}n)(n^2+2^n+2^{\frac{n+1}{2}}n)\)

Do $n$ lẻ nên \(\frac{n+1}{2}\in\mathbb{N}\). Do đó mỗi thừa số đều là số nguyên dương.

\(n^4+4^n\in\mathbb{P}\Rightarrow \) một trong hai thừa số trên phải bằng $1$. Hiển nhiên

\(n^2+2^n-2^{\frac{n+1}{2}}n=1\)

Bằng quy nạp, ta sẽ CM rằng \(2^\frac{n-1}{2}>n\) với \(n\geq 7\) $(1)$

Thật vậy:

Với \(n=7,8,...\) điều trên đúng. Giả sử nó đúng với \(n=k\) tức là \(2^\frac{k-1}{2}>k\)

Khi đó ta có \(2^{\frac{k+1-1}{2}}=2^{\frac{k-1}{2}}.2^{\frac{1}{2}}>2^{\frac{1}{2}}k>k+1\) với mọi \(k\geq 7\)

Do đó ta có $(1)$ Suy ra với \(n\geq 7 \Rightarrow n^2+2^n-2^{\frac{n+1}{2}}n>n^2>1\) ( vô lý)

\(\Rightarrow n<7\). Thử \(n=1,3,5\)\(n=1\) thỏa mãn. Khi đó \(n^4+4^n=5\in\mathbb{P}\)

Vậy $n=1$

\(\)

4 tháng 2 2018

có cách khác ngắn hơn không bạn?

1 tháng 11 2018

tai sao b^c +a +a^b +c +c^a+b=2(a+b+c)

24 tháng 9 2020

\(B=n^5+n^4+1=n^5-n^2+n^4-n+n^2+n+1\)

\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1\)

\(=\left(n^2+n+1\right)\left(n^3-n+1\right)\)

+) Với \(n=0\Rightarrow B=1\)không là số nguyên tố (loại)

+) Với \(n=1\Rightarrow B=3\)là số nguyên tố(thỏa mãn)

+) Với \(n\ge2\left(n\in N\right)\Rightarrow n^3-n+1\ge n^2+n+1\ge7\)

Do đó B là hợp số

 Vậy n=1 là giá trị cần tìm.

24 tháng 9 2020

 Ta có:\(n^5+n^4+1=n^5+n^4+n^3-n^3+1\)

\(=n^3\left(n^2+n+1\right)-\left(n-1\right)\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)\left(n^3-n-1\right)\)

Đk để là số nguyên tố thì:

\(n^2+n+1=1\)hoặc \(n^3-n-1=1\)

Xét \(n^2+n+1=1\Rightarrow n^2+n=0\Rightarrow\orbr{\begin{cases}n=1\left(tm\right)\\n=-1\left(ktm\right)\end{cases}}\)

Xét \(n^3-n+1=1\Rightarrow n^3-n=0\Rightarrow n\left(n^2-1\right)=0\)

                                                                \(\Rightarrow\orbr{\begin{cases}n=0\left(tm\right)\\\orbr{\begin{cases}n=1\left(tm\Rightarrow\right)\\n=-1\left(ktm\right)\end{cases}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}n=0\left(tm\right)\\n=1\left(tm\right);n=-1\left(ktm\right)\end{cases}}\)

Tại \(n=0\Rightarrow A=1\left(ktm\right)\)Vì 1 không phải số ngto

Tại\(n=1\Rightarrow A=3\left(tm\right)\)vì 3 là số ngto

Vậy ...

24 tháng 6 2019

Câu hỏi của Nguyễn Thị Hồng Linh - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo link này nhé!

14 tháng 11 2019

\(B=n^5+n^4+1=\left(n^2+n+1\right)\left(n^3-n+1\right)\)

Xét \(n>2\)thì không thỏa mãn vì là tích của 2 số khác 1.

Xét n = 0 hoặc n = 1 hoặc n = 2 là xong

24 tháng 6 2019

Với n là số tự nhiên

Ta có: \(5^{2n^2-6n+2}-12=25^{n^2-3n+1}-12=25^{n^2-3n}.25-12\)

Với \(n^2-3n=n\left(n-3\right)⋮2\)( vì n, n-3 1 trong 2 số sẽ có sỗ chẵn, hoặc chia trường hợp n chẵn và n lẻ để chứng minh nó chia hết cho 2)

Đặt: \(n^2-3n=2k\) 

=> \(5^{2n^2-6n+2}-12=25^{2k}.25-12\equiv\left(-1\right)^{2k}.25-12\equiv25-12\equiv0\left(mod13\right)\)

Mà \(5^{2n^2-6n+2}-12\)là số nguyên tố

=> \(5^{2n^2-6n+2}-12=13\Leftrightarrow5^{2n^2-6n+2}=25=5^2\Leftrightarrow2n^2-6n+2=2\)

\(\Leftrightarrow\orbr{\begin{cases}n=0\\n=3\end{cases}}\) thử lại thỏa mãn

Vậy n=0 hoặc n=3

14 tháng 6 2021

số đó là 1

19 tháng 8 2016

pt đa thức thành nhân tử 
cho 1 cái =1, 1 cách = chính nó. xong