Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt số cần tìm là \(\overline{ab},\left(0\le a,b\le9;a,b\inℕ;a\ne0,a+b=8\right)\)
Số sau khi đổi vị trí là \(\overline{ba}\).
Theo bài ra ta có: \(\overline{ab}-\overline{ba}=18\Leftrightarrow10a+b-\left(10b+a\right)=18\Leftrightarrow9a-9b=18\Leftrightarrow a-b=2\)
\(\Rightarrow a-\left(8-a\right)=2\Leftrightarrow2a=10\Leftrightarrow a=5\Rightarrow b=3\)(thỏa)
gọi số tự nhiên có hai chữ số là ab
nếu đổi vị trí hai chữ số đó thì số mới là ba
vì tổng của hai chữ số bằng 8 nên ta có: a+b=8 (1)
khi đổi vị trí của hai chữ số thì số tự nhiên đó giảm 36 đơn vị nên ta có:
ab -ba =36
10a+b-10b-a=36
9a-9b=36
a-b=4(2)
từ (1) và (2 ) ta có hệ
a+b=8
a-b=4
a=6 và b=2
Gọi \(\overline{ab}=10a+b\) là số tự nhiên cần tìm (a>b)
Theo đề ta có
\(\left\{{}\begin{matrix}a+b=8\\10a+b-\left(10b+a\right)=36\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\10a+b-10b-a=36\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\9a-9b=36\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\a-b=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2a=12\\a-b=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\)
Vậy số tự nhiên đó là 62
Gọi số đó là ab
Ta có : a + b = 8 (1)
Và ab - 36 = ba (2)
Từ (2) ta có : ab - ba = 36
<=> 10a + b - 10b - a = 36
<=> 9a - 9b = 36
<=> 9( a - b) = 36
<=> a - b = 4 (3)
Kết hợp (1) và (3) ta trở về bài toán tổng - hiệu
Số a là : (8 + 4):2 = 6
Số b là :8 - 6 = 2
Vậy số bạn đầu là 62
- Gọi chữ số hàng chục là x, chữ số hàng đơn vị là y (10 > x,y > 0)
- Ta có: \(x+y=8\left(a\right)\)
và \(\overline{yx}-\overline{xy}=18\)
\(\Leftrightarrow10y+x-10x-y=18\)
\(\Leftrightarrow9y-9x=18\)
\(\Leftrightarrow9\left(y-x\right)=18\)
\(\Leftrightarrow y-x=2\left(b\right)\)
Từ (a) và (b), ta có hệ phương trình sau: \(\left\{{}\begin{matrix}x+y=8\\y-x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8-y\\y-8+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8-y\\2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=5\end{matrix}\right.\)
Vậy: Số cần tìm là 35