Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có vẻ khá lâu rùi ko có ai giải bài này.
1. \(\overline{ab}^2=\overline{abc}+c^2\le999+9^2=1080\)
\(\Leftrightarrow\overline{ab}\le31\) . Cũng có: \(\overline{ab}\ge10\) vì là số có 2 chữ số
\(\overline{ab}^2-10.\overline{ab}=c^2+c\)
Với \(\overline{ab}\ge16\) thì \(\overline{ab}^2-10\overline{ab}\ge96>90=9^2+9\ge c^2+c\) (ko t/m)
Vậy \(10\le\overline{ab}\le16\)
Thử từng trường hợp tìm được \(\overline{abc}=100;\overline{abc}=147\)
2. Dễ thấy \(32^2\le\overline{ab}^2=\overline{acdb}\le99^2\) do \(\overline{acdb}\) có 4 chữ số.
Ta chứng minh được với a nhận các giá trị từ 1 tới 8 thì:
\(\overline{ab}^2=100a^2+20ab+b^2\le100a^2+180a+81< 1000a< \overline{acdb}\)
(Thay lần lượt các giá trị vô là xong)
Do đó \(a=9\). Vì \(\overline{ab}^2\) có tận cùng là b nên b nhận các giá trị 0,1,5,6.
Thử từng trường hợp ta được \(\overline{ab}=95;\overline{ab}=96\)
Bạn tham khảo ở đây :
https://diendantoanhoc.net/topic/184040-c%C3%B3-bao-nhi%C3%AAu-s%E1%BB%91-t%E1%BB%B1-nhi%C3%AAn-c%C3%B3-3-ch%E1%BB%AF-s%E1%BB%91-abc-sao-cho-a-b-c-l%C3%A0-%C4%91%E1%BB%99-d%C3%A0i-3-c%E1%BA%A1nh-c%E1%BB%A7a-1-tam-gi%C3%A1c-c%C3%A2n/
Ta có:
\(\dfrac{n}{a+b+c}=\dfrac{100a+10b+c}{a+b+c}=1+\dfrac{99a+9b}{a+b+c}\)
\(\ge1+\dfrac{99a+9b}{a+b+9}=10+\dfrac{90a-81}{a+b+9}\ge10+\dfrac{90a-81}{a+18}\)
\(=100+\dfrac{-1701}{a+18}\ge100-\dfrac{1701}{19}=\dfrac{199}{19}\)
Dấu = xảy ra khi:\(\left\{{}\begin{matrix}a=1\\b=c=9\end{matrix}\right.\)