Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số cần tìm là a
Theo đề ra ta có: a-5 chia hết cho 8 => a+3 chia hết cho 8
a-7 chia hết cho 10=> a+3 chia hết cho 10
a-12 chia hết cho 15=> a+3 chia hết cho 15
a-17 chia hết cho 20=> a+3 chia hết cho 20
=> a+3 thuộc BC(8;10;15;20)
8=2^3
10=2.5
15=3.5
20=2^2.5
BCNN(8;10;15;20)=2^3.3.5=120
BC(8;10;15;20)={0;120;240;...}
=>a+3={0;120;240;...}
=>a={-3;117;237;...}
Vì a là số tự nhiên có 3 chữ số nhỏ nhất nên a chỉ có thể là 117
gọi số cần tìm là a
Theo đề ra ta có: a-5 chia hết cho 8 => a+3 chia hết cho 8
a-7 chia hết cho 10=> a+3 chia hết cho 10
a-12 chia hết cho 15=> a+3 chia hết cho 15
a-17 chia hết cho 20=> a+3 chia hết cho 20
=> a+3 thuộc BC(8;10;15;20)
8=2^3
10=2.5
15=3.5
20=2^2.5
BCNN(8;10;15;20)=2^3.3.5=120
BC(8;10;15;20)={0;120;240;...}
=>a+3={0;120;240;...}
=>a={-3;117;237;...}
Vì a là số tự nhiên có 3 chữ số nhỏ nhất nên a chỉ có thể là 117
A= 4p+3 = 17m+9= 19n+13
A+25 =4p+28= 17m+34 =19n+38
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19
vậy A+25 chia hết cho 4.17.19 =1292
A chia 1292 dư (1292-25) = 1267
phân tích từng số thành thừa số nguyên tố rồi tính .
VD: 1 :
4=22 ;;;6=2.3;;; 8=23 ;;;; 10 = 2.5 ;;;; 12 =22.3
=> BCNN(4;6;8;10;12)=23.3.5=`10
Để tìm số tự nhiên nhỏ nhất có 2 chữ số thỏa mãn yêu cầu đề bài, ta cần tìm số đó bằng cách thử từng số tự nhiên có 2 chữ số cho đến khi tìm được số thỏa mãn yêu cầu.
Ta gọi số cần tìm là AB (với A và B lần lượt là chữ số hàng chục và hàng đơn vị của số đó). Theo đề bài, ta có:
- AB chia cho 8 dư 7: tức là AB = 8k + 7 với k là số nguyên dương nào đó.
- AB chia cho 7 dư 4: tức là AB = 7m + 4 với m là số nguyên dương nào đó.
Từ hai phương trình trên, ta suy ra:
- 8k + 7 = 7m + 4
- 8k - 7m = -3
Để giải phương trình này, ta thử các giá trị nguyên dương của k và m cho đến khi tìm được cặp giá trị thỏa mãn phương trình. Ta có:
- Khi k = 1, m = 2: 8 - 7 = -3 (không thỏa mãn)
- Khi k = 2, m = 3: 16 - 21 = -5 (không thỏa mãn)
- Khi k = 3, m = 4: 24 - 28 = -4 (khớp với phương trình)
Vậy số tự nhiên nhỏ nhất có 2 chữ số thỏa mãn yêu cầu đề bài là số 27.
👍
Những số có 2 chữ số chia cho 8 dư 7 là:
16+7,24+7,32+7,40+7,...88+7
= 23,31,39,47,...,95
Những số có 2 chữ số chia 7 dư 4 là:
14+4,21+4,28+4,...91+4
= 18,25,32,39,...95
Ở 2 dãy số trên, ta thấy số bé nhất mà 2 dãy lặp lại là 39, nên số cần tìm mà thỏa mãn đề bài là số 39
a) Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 3,4,5 đều dư 1và chia cho 7 thì không dư
Gọi số đó là x
Ta có: x - 1 ∈ BC(3; 4; 5) = {0; 60; 120; 180; 240; 300; ...}
=> x ∈ {1; 61; 121; 181; 241; 301 ...}
Vì x chia hết cho 7 => x = 301
b) Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1,chia cho 5 dư 1,chia cho 7 dư 3,chia hết cho 9
Ta có: a chia 2 dư 1
a chia 5 dư 1
a chia 7 dư 3
a chia hết cho 9
=> a chia hết cho 3; 6; 9; 10
Ta có: 2 + 1 = 3
6 + 1 = 6
7 + 3 = 10
=> a nhỏ nhất
=> a thuộc BCNN(3; 6; 9; 10)
Ta có: 3 = 3
6 = 2 . 3
9 = 3^2
10 = 2 . 5
=> BCNN(3; 6; 9; 10) = 3^2 . 2 . 5 = 90
=> a = 90
Gọi số cần tìm là x, ta có: x;3 dư 2
x:4 dư 3
x:5 dư 4
=> x+1 chia hết cho 3,4,5. Ta tìm x bằng cách lấy (3x4x5)* k - 1= 60*k-1
Phải tìm k nhỏ nhất sao cho 60*k là số tự nhiện nhỏ nhất có 3 chữ số
=> k=2 vì 60*2=120
Vậy x+1=120
=>x=119
Vậy số tự nhiện nhỏ nhất có 3 chữ số cần tìm là 119
Tìm số tự nhiên nhỏ nhất khi chia cho 8 dư 6, chia cho 12 dư 10, chia cho 15 dư 13
và chia hết cho 23
Gọi số cần tìm là x
ta chú ý x+2 chia hết cho 8 chia hết cho 12 , chia hết cho 15
nên \(x+2\in BC\left(8,12,15\right)=120\)
mà x chia hết cho 23 nên : \(\Rightarrow x=598\)