
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3
a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố
+) Nếu p > 1 :
p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại
p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại
Vậy p = 1
c) p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3

Bài 1:
ƯCLN(a;b)=15
=>a⋮15; b⋮15
\(a\cdot b=ƯCLN\left(a;b\right)\cdot BCN\mathbb{N}\left(a;b\right)\)
=>\(a\cdot b=15\cdot3000=45000\)
mà a⋮15; b⋮15
nên (a;b)∈{(15;3000);(3000;15);(30;1500);(1500;30);(60;750);(750;60);(75;600);(600;75);(120;375);(375;120);(150;300);(300;150)}
mà ƯCLN(a;b)=15
nên (a;b)∈{(15;3000);(3000;15);(120;375);(375;120)}
Bài 2:
Sửa đề: Tìm số nguyên tố P
a: TH1: P=2
\(2p^2+1=2\cdot2^2+1=2\cdot4+1=9\) là hợp số
=>Nhận
TH2: p=3
\(2p^2+1=2\cdot3^2+1=2\cdot9+1=19\) là số nguyên tố
=>Loại
TH3: p=3k+1
\(2p^2+1=2\cdot\left(3k+1\right)^2+1\)
\(=2\left(9k^2+6k+1\right)+1=18k^2+12k+2+1\)
\(=18k^2+12k+3=3\left(6k^2+4k+1\right)\) ⋮3
=>\(2p^2+1\) là hợp số
TH4: p=3k+2
\(2p^2+1=2\left(3k+2\right)^2+1\)
\(=2\left(9k^2+12k+4\right)+1=18k^2+24k+8+1\)
\(=18k^2+24k+9=3\left(3k^2+6k+3\right)\) ⋮3
=>\(2p^2+1\) là hợp số
Vậy: p=2 hoặc p là số nguyên tố lớn hơn 3
b: TH1: p=3
p+4=3+4=7; p+8=3+8=11
=>Nhận
TH2: p=3k+1
\(p+8=3k+1+8=3k+9=3\left(k+3\right)\) ⋮3
=>p+8 là hợp số
=>Loại
TH3: p=3k+2
\(p+4=3k+2+4=3k+6=3\left(k+2\right)\) ⋮3
=>p+4 là hợp số
=>Loại

Sửa đề: Tìm số nguyên tố P
a: TH1: P=2
\(2p^2+1=2\cdot2^2+1=2\cdot4+1=9\) là hợp số
=>Nhận
TH2: p=3
\(2p^2+1=2\cdot3^2+1=2\cdot9+1=19\) là số nguyên tố
=>Loại
TH3: p=3k+1
\(2p^2+1=2\cdot\left(3k+1\right)^2+1\)
\(=2\left(9k^2+6k+1\right)+1=18k^2+12k+2+1\)
\(=18k^2+12k+3=3\left(6k^2+4k+1\right)\) ⋮3
=>\(2p^2+1\) là hợp số
TH4: p=3k+2
\(2p^2+1=2\left(3k+2\right)^2+1\)
\(=2\left(9k^2+12k+4\right)+1=18k^2+24k+8+1\)
\(=18k^2+24k+9=3\left(3k^2+6k+3\right)\) ⋮3
=>\(2p^2+1\) là hợp số
Vậy: p=2 hoặc p là số nguyên tố lớn hơn 3
b: TH1: p=3
p+4=3+4=7; p+8=3+8=11
=>Nhận
TH2: p=3k+1
\(p+8=3k+1+8=3k+9=3\left(k+3\right)\) ⋮3
=>p+8 là hợp số
=>Loại
TH3: p=3k+2
\(p+4=3k+2+4=3k+6=3\left(k+2\right)\) ⋮3
=>p+4 là hợp số
=>Loại

Với p=2 ta được p+4=6(hợp số)(Loại)
Với p=3 ta được p+4=7(số nguyên tố),p+8=11(snt)(TM)
Làm nốt xét p khác 3 nhé!

TH1: p=2
=>2*2+1=5 và 2+10=12(loại)
TH2: p=3
=>p+10=13; 2*3+1=7
=>Nhận
TH3: p=3k+1
=>2p+1=6k+2+1=6k+3(loại)
TH4: p=3k+2
=>p+10=3k+12(loại)
=>P=3