Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : 2x+1.3y=12x =>2x.2.3y=12x => 3y.2=12x : 2x => 3y=6x : 2
vì 3y là số lẻ vs mọi y nên 6x:2 cx là số lẻ . Suy ra x=1. Khi đó y=1
vậy.................
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}\)
Ta đặt: \(\dfrac{a}{c}=\dfrac{b}{d}=k\) => a=ck ; b=dk
a) \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-\left(dk\right)^2}{c^2-d^2}=\dfrac{b^2k^2-d^2k^2}{c^2-d^2}=\dfrac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2\)(1)
\(\dfrac{ab}{cd}=\dfrac{ck.dk}{cd}=\dfrac{k^2\left(c.d\right)}{cd}=k^2\) (2)
Từ (1) và (2) => \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)
b) \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(ck-dk\right)^2}{\left(c-d\right)^2}=\dfrac{k^2\left(c-d\right)^2}{\left(c-d\right)^2}=k^2\) (3)
Từ (2) và (3) => \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\). Chúc bạn học tốt
Vào đây: Câu hỏi của nguyen lan anh - Toán lớp 7 | Học trực tuyến
1.a)\(2.x-\dfrac{5}{4}=\dfrac{20}{15}\)
\(\Leftrightarrow2.x=\dfrac{20}{15}+\dfrac{5}{4}=\dfrac{4}{3}+\dfrac{5}{4}=\dfrac{16+15}{12}=\dfrac{31}{12}\)
\(\Leftrightarrow x=\dfrac{31}{12}:2=\dfrac{31}{12}.\dfrac{1}{2}=\dfrac{31}{24}\)
b)\(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{8}\right)\)
\(\Leftrightarrow\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}=-\dfrac{5}{6}\)
2.Theo đề bài, ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\) và \(a+b=-15\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{a+b}{2+3}=\dfrac{-15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=-3\Rightarrow a=-6\\\dfrac{b}{3}=-3\Rightarrow b=-9\end{matrix}\right.\)
3.Ta xét từng trường hợp:
-TH1:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow x\in\left\{0;1\right\}\)
-TH2:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)
Vậy \(x\in\left\{0;1\right\}\)
4.\(B=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^9=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^9=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{18}=\left(\dfrac{3}{7}\right)^3=\dfrac{27}{343}\)
Khoảng cách các số ở 1 là 3
Khoảng cách các số ở 2 là 5
=> Khoảng cách các số giống nhau là 15
Mà số đầu tiên là 7 , số cuối là 292
=> Số đồng thời có mặt ở cả 2 dãy là : ( 292 - 7 ) : 15 + 1 = 20 ( số )
Vì \(\overline{ab^2}=\left(a+b\right)^3\) nên (a + b) phải là số chính phương.
Đặt a+b=\(x^2\)
\(\Rightarrow\left(a+b\right)^3=\overline{ab^2}\\ \Leftrightarrow x^6=\overline{ab^2}\\ \Leftrightarrow x^3=\overline{ab}\)
Vì 9 < \(\overline{ab}\)<100 \(\Rightarrow9< x^3< 100\\ \Leftrightarrow x\in\left\{3;4\right\}\)
Xét 2 trường hợp:
\(TH1:x=3\\ \Rightarrow\left(a+b\right)^3=\left(3^2\right)^3=729\\ \Leftrightarrow27^2=\left(2+7\right)^3\left(tm\right)\)
\(TH2:x=4\\ \Rightarrow\left(a+b\right)^3=\left(4^2\right)^3=4096\\ \Leftrightarrow64^2=\left(6+4\right)^3\left(loại\right)\)
Vậy \(\overline{ab}=27\)
Sai đề rồi phải là kẻ \(AH\perp BC\left(H\in BC\right)\) nhé!
A B C H E F
a) Xét 2 Δ vuông: Δ AHB = Δ AHC (c.h-g.n) vì:
\(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{ACB}=\widehat{ABC}\left(gt\right)\end{cases}}\)
=> \(BH=HC\)
b) Xét 2 Δ vuông: Δ BHF = Δ CHE (c.h-g.n) vì:
\(\hept{\begin{cases}HB=HC\left(p.a\right)\\\widehat{HBF}=\widehat{HCE}\left(gt\right)\end{cases}}\)
=> \(HE=HF\) => Tam giác HEF cân tại H
a) Cho \(3x^2-4x=0\)
\(\Rightarrow3.x.x-4x=0\)
\(\Rightarrow x.\left(3x-4\right)\) = 0
\(\left[{}\begin{matrix}x=0\\3x-4=0\end{matrix}\right.\)
Có \(3x - 4 =0\)
\(\Rightarrow3x=4\)
\(\Rightarrow x=\dfrac{4}{3}\)
Vậy x= 0 hoặc x =\(\dfrac{4}{3}\)là nghiệm của đa thức \(3x^2-4x\)
b) Cho \(x+3x^2=0\)
\(\Rightarrow x+3.x.x=0\)
\(\Rightarrow x.\left(3x+1\right)=0\)
Suy ra x =0
hoặc \(3x+1=0\)
\(\Rightarrow\)3x=-1
x=\(\dfrac{-1}{3}\)
Vậy ...
Bài 3: Tìm nghiệm các đa thức sau:
a. 3x2 - 4x
Gọi P(x) là đa thức 3x2 - 4x.
Cho P(x) = 0
=> 3x2 - 4x = 0
=> x (3x - 4)= 0
Suy ra:
TH1: x = 0
TH2: 3x - 4 = 0
_____3x___= 0 + 4
_____3x___= 4
______x___= \(\dfrac{4}{3}\)
Vậy x = \(\dfrac{4}{3}\) là nghiệm của đa thức 3x2 - 4x.
b. x + 3x2
Gọi Q(x) là đa thức x+3x2
Cho Q(x) = 0
=> x+3x2 = 0
=> x ( 3x) = 0
Suy ra:
TH1: x = 0
TH2: 3x = 0
=> x = 0.
Vậy x = 0 là nghiệm của đa thức x + 3x2 .
Chúc bn hx tốt!
Trả lời
Bạn xem tại link:
Câu hỏi của Kiều Mari - Toán lớp 7 - Học toán với OnlineMath
~Hok tốt~