K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2016

153=53+33+1

21 tháng 11 2016

=>a=5;b=3

1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299  CMR: A chia hết cho 31 b)tìm số tự nhiên n để 3n+4 chia hết cho n -12/tìm hai số nguyên dương a, b  biết  [ a,b] = 240 và (a,b) = 163/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=64/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =605/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =56/ tìm a,b biết a/b=4/5 và [ a,b ] = 1407/tìm số nguyên dương  a,b biết...
Đọc tiếp

1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299  CMR: A chia hết cho 31 

b)tìm số tự nhiên n để 3n+4 chia hết cho n -1

2/tìm hai số nguyên dương a, b  biết  [ a,b] = 240 và (a,b) = 16

3/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=6

4/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =60

5/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =5

6/ tìm a,b biết a/b=4/5 và [ a,b ] = 140

7/tìm số nguyên dương  a,b biết a+b = 128 và (a ,b)=16

8/ a)tìm a,b biết a+b = 42 và [a,b] = 72 

b)tìm a,b biết a-b =7 , [a,b] =140

9/tìm hai số tự nhiên , biết rằng tổng cúa chúng bằng 100 và có UwCLN là 10

10/ tìm 2 số tự nhiên biết ƯCLN của chúng là 5 và chúng có tích là 300

11/ chứng minh rằng nếu số nguyên tố p> 3 thì (p - 1) . (p + 1)  chia hết cho 24

12/ tìm hai số tự nhiên a,b (a < b ) biết ƯCLN (a,b ) = 12 ,  BCNN(a,b) = 180

 

2
29 tháng 10 2015

BÀI NÀY Ở ĐÂU MÀ NHIỀU THẾ BẠN!?

GIẢI CHẮC ĐÃ LẮM ĐÓ

29 tháng 10 2015

câu 1 a) thíu là chứng minh rằng a chia hết cho 31

 

30 tháng 9 2016

1 / 

abc = 198

2 /

Ta có: a,bc = 10 : ( a+b+c )

=> a,bc x (a + b + c) = 10

=> a,bc x 100 x (a + b + c) = 10 x 100

=> abc x (a + b + c) = 1000

=> 1000 phải chia hết cho abc 

=> abc thuộc Ư(1000) = {100; 125; 200;250;500}

Xét từng trường ta thấy abc = 125 thỏa mãn

Vậy a.bc = 1,25

3 / 

a ) Nhận thấy

5^b tận cùng là 5 

mà 2^a + 124 tận cùng cũng phải là 5 

=> 2^a tận cùng là 1 mà 2^a tận cũng là số chẵn trừ số 0 

=> a = 0 

 ta có 

2^0 + 124 = 5^b

=> 125 -= 5^b

=> 5^3 = 5^b

=> b = 3

Vậy a = 0 ; b = 3 

b ) nhận thấy

cứ nhân 5 lần số 3 với nhau tận cùng là 3

mà có : 101 : 5 = 20 ( dư 1 )
sau khi có tận cùng là 3 ta nhân thêm 1 số 3 nữa được tận cùng là 9

4 / 

a )  = 315

b ) = 216

c ) = 0 , 015555555555554

d ) = 2

nhé !

16 tháng 9 2016

\(x^3=x^2\Rightarrow x\in\left\{0;1;-1\right\}\)

Vì: \(x\ge0\Rightarrow x\in\left\{0;1\right\}\)

Vậy: \(x\in\left\{0;1\right\}\)

\(\left(x-1\right)^4=\left(x-1\right)^3\Rightarrow\left(x-1\right)\in\left\{-1;0;1\right\}\)

  • \(x-1=-1\Rightarrow x=0\) (nhận)
  • \(x-1=0\Rightarrow x=1\)(nhận)
  • \(x-1=1\Rightarrow x=2\)(nhận)

Vậy: \(x\in\left\{0;1;2\right\}\)

16 tháng 9 2016

a) \(x^3=x^2\)

\(\Rightarrow x^3:x^2=1\)

\(\Rightarrow x=1\)

Vậy \(x=1\)

b) \(\left(x-1\right)^4=\left(x-1\right)^3\)

\(\Rightarrow\left(x-1\right)^4:\left(x-1\right)^3=1\)

\(\Rightarrow x-1=1\)

\(\Rightarrow x=2\)

Vậy \(x=2\)

30 tháng 10 2016

Bài 1:

A = 5 + 5^2 + 5^3 +...+ 5^8

A = ( 5 + 5^2 ) + ( 5^3 + 5^4 ) +...+ (5^7 +5^8)

A = 1.(5+5^2) + 5^2 . (5+5^2) +...+ 5^6.(5+5^2)

A = 1.30 + 5^2.30 +...+ 5^6.30

A = (1+5^2+...+5^6).30

Vì trong 2 thừa số có 1 thừa số chia hết cho 30 nên A chia hết cho 30

B = 3 + 3^3 + 3^5 +...+ 3^29

B = (3+ 3^3 +3^5)+...+(3^25+3^27+3^29)

B = 1.(3+3^3+3^5)+...+3^24. (3+3^3+3^5)

B = 1.273+...+3^24.273

B = (1+...+3^24).273

Vì trong 2 thừa số có 1 thừa số chia hết cho 273 nên B chia hết cho 273

8 tháng 6 2018

A=5+5^2+5^3+...+5^20

=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)

=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)

=30+5^2.30+5^4.30+5^6.30+..+5^18.30

=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)

Vậy A là bội của 30

1 tháng 12 2016

a;b;c là số nguyên dương =>3abc>0

=>a^3>b^3=> a>b

và a^3>c^3=>a>c

=>2a>b+c

=>4a>2.(b+c)=a^2

=>4>a

2.(b+c) là số chẵn =>a^2 là số chẵn=>a là số chẵn=>a=2

vì b;c<2=a và b;c là các số nguyên dương =>b=c=1

vậy a=2;b=1;c=1