Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Ta có: a ≥ b ( a,b ∈ N )
ƯCLN ( a, b) = 16
⟹ a chia hết cho 16 ⟹ a = 16.m
⟹ b chia hết cho 16 ⟹ b = 16. n
(m, n là thương; m,n ∈ N, m ≥ n)
ƯCLN(m,n) = 1
⟹ a . b = ƯCLN.BCNN
mà a = 16. m
b = 16. n
Thay số: 16 . m . 16 . n = 16 . 240
16. m . 16. n = 3840
256. m. n = 3840
⟹ m. n = 3840 : 256 = 15
Ta có bảng sau :
m | ... | ... | ... |
n | ... | ... | ... |
a | ... | ... | ... |
b | ... | ... | ... |
⟹ Vậy (a,b) ∈ { (... , ...) ; (... , ....)}
Ta có : ƯCLN(a,b)=5 => a = 5m , b = 5n và ƯCLN(m,n)=1 với ( a > b ) => m > n
=> a.b=5m.5n=25.mn=300
=> mn=300 : 25 = 12
Ta có bảng liệt kê sau :
m | 4 | 12 |
n | 3 | 1 |
a | 20 | 60 |
b | 15 | 5 |
vì ƯCLN(a,b)=6 (a<b)
a=6m
b=6n
với (m,n)=1,m\(\le\)n
a+b=6m+6n=6(m+n)=84
=>m+n=14
m=1 ,n=13,=>a=6,b=78
m=3,n=11,=>a=18,b=66
m=5,n=9,=>a=30,b=54
m=7,n=7,a=42,b=42
bài còn lại cũng tương tự
3 ( a+ b ) = 5 ( a- b )
\(\Leftrightarrow\)3a + 3b = 5a - 5b
\(\Leftrightarrow\)2a = 8b
\(\Rightarrow\)\(\frac{a}{b}=\frac{8}{2}=4\)
Vậy thương của 2 số tự nhiên đó là 4
Cần thêm điều kiện b khác 0 nha :)
Ta có: 3(a + b) = 5(a - b)
<=> 3a + 3b = 5a - 5b
<=> 3a - 5a = -3b - 5b (chuyển vế đổi dấu 2 hạng tử 5a và 3b)
<=> -2a = -8b (đưa thừa số a chung ra ngoài ở vế trái, b chung ra ngoài ở vế phải là được :))
<=> -2a / b = -8 (chia cả 2 vế cho b khác 0)
<=> a / b = -8 / -2 = 4 (chia cả 2 vế cho -2)
Vậy a / b = 4 :)