\(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

Trả lời

Ta có

\(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\left(1\right)\)

Mà 225 là số lẻ nên \(\hept{\begin{cases}100a+3b+1\\2^a+10a+b\end{cases}}\)cùng lẻ (2)

*) Với a=0 ta có

Từ (1)<=>(100.0+3b+1)(\(2^0\)+10.0+b)=225

<=>(3b+1)(1+b)=225=\(3^2.5^2\)

Do 3b+1 :3 dư 1 và 3b+1>1+b

Nên (3b+1)(1+b)=25.9\(\Rightarrow\hept{\begin{cases}3b+1=25\\1+b=9\end{cases}\Leftrightarrow b=8}\)

*) Với a\(\ne\)0 (a\(\in N\)), ta có:

Khi đó 100a là số chẵn, từ (2)=>3b+1 lẻ=>b chẵn

\(\Rightarrow2^a+10a+b\)chẵn, trái với (2)

\(\Rightarrow b=\varnothing\)

Vậy \(\hept{\begin{cases}a=0\\b=8\end{cases}}\)

15 tháng 5 2018

câu này sai rồi bạn ơi tại vì chẵn + lẻ vẫn = lẻ mà bạn

24 tháng 3 2018

Do a, b là các số tự nhiên nên 100a + 3b + 1 và 2a + 10a + b cũng là các số tự nhiên.

Ta có 225 = 32.52 nên \(Ư\left(225\right)=\left\{1;3;5;9;15;25;45;75;225\right\}\)

Nếu a = 0 thì ta có (3b + 1)(1 + b) = 225 

Do 1 + b < 3b + 1 nên ta có bảng:

1 + b135915
b024814
1 + 3b410162543
 LLLTML

Vậy ta có a = 0, b = 8.

Với a khác 0, ta có 100a > 100. Vậy thì 100a+ 3b + 1 = 225 hay a = 1 hoặc a = 2

Với a = 1, ta có: 12 + b = 1 (L)

Với a = 2, ta có: 24 + b = 1 (L)

Vậy tóm lại ta tìm được a = 0, b = 8.

12 tháng 4 2017

Bài 1:

Ta có:

\(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\left(1\right)\)

\(225\) lẻ nên \(\left\{{}\begin{matrix}100a+3b+1\\2^a+10a+b\end{matrix}\right.\) cùng lẻ \(\left(2\right)\)

\(*)\) Với \(a=0\) ta có:

Từ \(\left(1\right)\Leftrightarrow\left(100.0+3b+1\right)\left(2^a+10.0+b\right)=225\)

\(\Leftrightarrow\left(3b+1\right)\left(1+b\right)=225=3^2.5^2\)

Do \(3b+1\div3\)\(1\)\(3b+1>1+b\)

Nên \(\left(3b+1\right)\left(1+b\right)=25.9\) \(\Rightarrow\left\{{}\begin{matrix}3b+1=25\\1+b=9\end{matrix}\right.\) \(\Leftrightarrow b=8\)

\(*)\) Với \(a\ne0\left(a\in N\right)\) ta có:

Khi đó \(100a\) chẵn, từ \(\left(2\right)\Rightarrow3b+1\) lẻ \(\Rightarrow b\) chẵn

\(\Rightarrow2^a+10a+b\) chẵn, trái với \(\left(2\right)\) nên \(b\in\varnothing\)

Vậy \(\left\{{}\begin{matrix}a=0\\b=8\end{matrix}\right.\)

Bài 2:

Ta có:

\(A=\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+...+\dfrac{1}{1+3+...+2017}\)

\(=\dfrac{1}{\dfrac{\left(1+3\right).2}{2}}+\dfrac{1}{\dfrac{\left(1+5\right).3}{2}}+...+\dfrac{1}{\dfrac{\left(1+2017\right).1009}{2}}\)

\(=\dfrac{2}{2.4}+\dfrac{2}{3.6}+\dfrac{2}{4.8}+...+\dfrac{2}{1009.2018}\)

\(=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{1009.1009}\)

\(\Rightarrow A< \dfrac{1}{2.2}+\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{1008.1009}\right)\)

\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{1008}-\dfrac{1}{1009}\right)\)

\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{1009}\right)\)

\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}=\dfrac{3}{4}\) (Đpcm)

25 tháng 4 2017

Tuyệt cú mèokhocroikhocroikhocroi

19 tháng 11 2018

1 .x+5  và 2y+1 là Ư(42) lập bảng tính

2.vd tc chia hết 

18 tháng 6 2019

b) 

Gọi 3 số đó là : a) b) c)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)là số nguyên

Vì a ; b ; c số tự nhiên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)là phân số

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)lớn nhất \(=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}=\frac{11}{6}< 2\)và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)nhỏ nhất \(>0\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Vậy 3 số tự nhiên cần tìm là : 2 ; 3 ; 6

18 tháng 6 2019

a) 

\(A=\frac{4}{6}\times10+\frac{6}{10}\times16+\frac{1}{16}\times3+\frac{1}{24}\times7+\frac{1}{28}\times5\)

\(A=\frac{20}{3}+\frac{48}{5}+\frac{3}{16}+\frac{7}{24}+\frac{5}{28}\)

\(A=\frac{11200}{1680}+\frac{16128}{1680}+\frac{315}{1680}+\frac{490}{1680}+\frac{300}{1680}\)

\(A=\frac{26433}{1680}\)

Vậy \(A=\frac{26433}{1680}\)

17 tháng 6 2019

Câu hỏi của Cặp đôi ngọt ngào - Toán lớp 6 - Học toán với OnlineMath

Tham khảo nhé!

18 tháng 8 2020

                                               Bài làm :

Ta có :

\(BCNN\left(a,b\right).ƯCLN\left(a,b\right)=336.12=4032\)

Đặt a=12x ; b=12y . ƯCLN(x,y)=1

Mà a.b = 4032

=>12x.12y=4032

=>x.y=28

Mà ƯCLN(x,y)=1

=> Các cặp (x,y) là : (1,28) ; (28,1) ; (4,7) ; (7,4)

  • Khi x=1 ; y=28 thì a=1.12=12 ; b=28.12=336
  • Khi x=28 ; y=1 thì a=28.12=336 ; b=1.12=12
  • Khi x=4 ; y=7 thì a=12.48 ; y=12.7 = 84
  • Khi x=7 ; y=4 thì a=12.7=84 ; b=12.4=48

Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

DD
12 tháng 4 2021

Nếu \(a\ge1\)thì \(100a+3b+1\ge100\)suy ra \(100a+3b+1=225\)

\(\Rightarrow2^a+10a+b=1\)(vô lí do \(a\ge1\))

Do đó \(a=0\)

Phương trình ban đầu trở thành: 

\(\left(3b+1\right)\left(b+1\right)=225=3^2.5^2\).

Vì \(3b+1\)chia cho \(3\)dư \(1\)nên \(\orbr{\begin{cases}3b+1=25\\3b+1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}b=8\\b=0\end{cases}}\).

Thử lại thấy \(b=8\)thỏa mãn.

Vậy \(\left(a,b\right)=\left(0,8\right)\).