Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 ) Vì số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó
Để \(\left(n+3\right)\left(n+1\right)\)là nguyên tố
\(\Rightarrow n+1=1,n+3\)là số nguyên tố do \(n+3>n+1\)
\(n=0\Rightarrow\left(n+3\right)\left(n+1\right)=3\)
\(\Rightarrow n=0\)( chọn )
2 ) Tổng 7a5 + 8b4 chia hết cho 9 nên 7 + a + 5 + 8 + b + 4 \(⋮\) 9 , tức là :
24 + a + b \(⋮\) 9 . Suy ra a + b \(\in\){ 3 ; 12 } .
Ta có a + b > 3 ( vì a – b = 6 ) nên a + b = 12 .
Từ a + b = 12 và a – b = 6 , ta có a = ( 12 + 6 ) : 2 = 9
Suy ra b = 3 .
Thử lại : 795 + 834 = 1629 chia hết cho 9 .
Sửa đề: số nhỏ nhất có 4 chữ số
Ta có: \(\frac{35}{49}=\frac{5}{7},\frac{130}{143}=\frac{10}{11}\)
Từ dữ kiện bài ta được: số đó chia hết cho 7,11,13
Hay số phải tìm là BC(7,11,13)=1001
Ta có:
\(a:\frac{6}{7}=a.\frac{7}{6}=\frac{7a}{6}\)là số tự nhiên => 7a chia hết cho 6
Mà (7;6)=1 => a chia hết cho 6 (1)
\(a:\frac{10}{11}=a.\frac{11}{10}=\frac{11a}{10}\)là số tự nhiên => 11a chia hết cho 10
Mà (11;10)=1 => a chia hết cho 10 (2)
Từ (1) và (2) => \(a\in BC\left(6;10\right)\)
Mà a nhỏ nhất => a = BCNN(6;10) = 30
Vậy a = 30
Vì a: \(\frac{6}{7}\)= Z => \(a.\frac{7}{6}\)= Z=> a thuộc B (6)
vì \(a:\frac{10}{11}=Z=>a.\frac{11}{10}=Z\)=>chữ số hàng đơn vị của a là 0
Để thỏa mãn thì a = 30 vì \(30\in B\left(6\right)\)là STN nhỏ nhất có chữ số 0 bên hàng đơn vị
Bài 1:
ĐKXĐ:\(n\ne-2\)
Ta có:\(\frac{n-1}{n+2}=1-\frac{3}{n+2}\)
Để phân số đó nguyên thì \(n+2\inƯ\left(3\right)\)
=> \(n+2=\left\{-3;-1;1;3\right\}\)
=> \(n=\left\{-5;-3;-1;1\right\}\)
Mà \(n\in N\)=> n=1
Bài 2:
ĐKXĐ \(a\ne1;-1\)
Để \(\frac{21}{a}\in N\)
Thì \(a\inƯ\left(21\right)\)
=>a={1;3;7;21} (1)
Để \(\frac{22}{a-1}\in N\)thì \(a-1\inƯ\left(22\right)\)
=>a-1={1;2;11;22}
=>a={1;3;12;23} (2)
Để \(\frac{24}{a+1}\in N\)Thì \(a+1\inƯ\left(24\right)\)
=> a+1={1;2;4;6;12;24}
=>a={0;1;3;5;11;23} (3)
Kết hợp (1);(2);(3) và ĐKXĐ ta có a=3 thì cả 3 phân số trên là số tự nhiên
\(a:\frac{6}{7}\)\(=\frac{7a}{6}\) Mà ƯCLN(7;6)=1 nên \(a\in\) B(6)
\(a:\frac{10}{11}=\frac{11a}{10}\) Mà ƯCLN(10;11)=1 nên a\(\in\) B(10)
Để A nhỏ nhất \(\Leftrightarrow\) A=BCNN(6;10)=30
Vậy số A phải tìm là 30
Dù đăng cách đây lâu rồi nhưng vẫn thích làm bài anh Tú đăng :P
Theo đề bài ta có:
\(\dfrac{a}{b}_{MIN}\)
\(\Rightarrow a_{MIN};b_{MAX}\)
\(\dfrac{a}{b}:\dfrac{9}{14}=N\Rightarrow\dfrac{a}{b}.\dfrac{14}{9}=N\Rightarrow a\in B\left(9\right);b\inƯ\left(14\right)\)
\(\dfrac{a}{b}:\dfrac{21}{35}=N\Rightarrow\dfrac{a}{b}.\dfrac{35}{21}=N\Rightarrow a\in B\left(21\right);b\inƯ\left(35\right)\)
\(a_{MIN}\Rightarrow a\in BCNN\left(9;21\right)\Rightarrow a=63\)
\(b_{MAX}\Rightarrow b\in UCLN\left(14;35\right)\Rightarrow b=7\)\(\)
Phân số cần tìm là \(\dfrac{63}{7}\)
Ta có : \(\frac{a+3}{a-1}\)=\(\frac{\left(a-1\right)+4}{a-1}\)=1+\(\frac{4}{a-1}\)
Vì \(\frac{a+3}{a-1}\)thuộc N, nên 1+\(\frac{4}{a-1}\)thuộc N, mà 1 thuộc N
==> \(\frac{4}{a-1}\)thuộc N ==> (a-1) thuộc Ước của 4 ={1;2;4}hoặc {+1;-1;+2;-2;+4;-4} nếu bạn đã học số âm
==> a thuộc {2;3;5}
Ta có :
\(\frac{a+3}{a-1}=\frac{a-1+1+3}{a-1}=\frac{a-1+4}{a-1}\)\(=1+\frac{4}{a-1}\)
Để \(\frac{a+3}{a-1}\)có kết quả là 1 số tự nhiên thì a + 3 chia hết cho a - 1
=> 4 chia hết cho a - 1 hay \(a-1\inƯ\left(4\right)\)
\(\Rightarrow a-1\in\left\{-4;-2;-1;1;2;4\right\}\)
Vì a là 1 số tự nhiên nên \(a\in\left\{0;2;3;5\right\}\)
Ủng hộ mk nha !!! ^_^