Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: số nhỏ nhất có 4 chữ số
Ta có: \(\frac{35}{49}=\frac{5}{7},\frac{130}{143}=\frac{10}{11}\)
Từ dữ kiện bài ta được: số đó chia hết cho 7,11,13
Hay số phải tìm là BC(7,11,13)=1001
Theo đề bài ta có : a/(11/18) = a*(18/11) thuộc N suy ra 18*a chia hết cho 11.
Lại có : a/(25/6) = a*(6/25) thuộc N suy ra 6*a chia hết cho 25.
Như vậy, a là bội chung của 11 và 25 nhưng để a nhỏ nhất thì a = BCNN (11, 25) = 275.
Vậy số cần tìm là 275 bạn nhé!
Chúc bạn học tốt!
Câu 3 :
b. P là nguyên tố khi và chỉ khi n + 4 chia hết cho 2n - 1
=> 2n + 8 chia hết cho 2n - 1
mà 2n - 1 chia hết cho 2n - 1 . Suy ra 9 chia hết cho 2n - 1
=> 2n - 1 \(\inƯ\)(9) = { 1 , 3 , 9 }
=> 2n - 1 \(\in\) { 1 ,3 , 9 }
=> 2n\(\in\){ 2 , 4 ,10}
=> n\(\in\){ 1, 2 ,5 }
=> P\(\in\){ 5 , 2 , 1 }
Vì P là nguyên tố nên P\(\in\){ 5,2}
vậy n\(\in\){ 1 , 2 }
Câu 4 :
1 ) Vì số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó
Để \(\left(n+3\right)\left(n+1\right)\)là nguyên tố
\(\Rightarrow n+1=1,n+3\)là số nguyên tố do \(n+3>n+1\)
\(n=0\Rightarrow\left(n+3\right)\left(n+1\right)=3\)
\(\Rightarrow n=0\)( chọn )
2 ) Tổng 7a5 + 8b4 chia hết cho 9 nên 7 + a + 5 + 8 + b + 4 \(⋮\) 9 , tức là :
24 + a + b \(⋮\) 9 . Suy ra a + b \(\in\){ 3 ; 12 } .
Ta có a + b > 3 ( vì a – b = 6 ) nên a + b = 12 .
Từ a + b = 12 và a – b = 6 , ta có a = ( 12 + 6 ) : 2 = 9
Suy ra b = 3 .
Thử lại : 795 + 834 = 1629 chia hết cho 9 .
VD tổng nghịch đâỏ cảu ba số này là 2 thì:
Số lớn nhất là a, số nhỏ nhất là c.
Ta có: c ≤ b ≤ a (1)
Theo giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) = 2 (2)
Do (1) nên 2 = \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ≤ \(\dfrac{3}{c}\)
Vậy c = 1
Thay vào (2) ta dc :\(\dfrac{1}{a}+\dfrac{1}{b}\) = 1 ≤ \(\dfrac{2}{b}\)
Vậy a = 2 từ đó b = 2
3 số cần tìm là 1; 2; 2.
Ta có : \(\frac{a+3}{a-1}\)=\(\frac{\left(a-1\right)+4}{a-1}\)=1+\(\frac{4}{a-1}\)
Vì \(\frac{a+3}{a-1}\)thuộc N, nên 1+\(\frac{4}{a-1}\)thuộc N, mà 1 thuộc N
==> \(\frac{4}{a-1}\)thuộc N ==> (a-1) thuộc Ước của 4 ={1;2;4}hoặc {+1;-1;+2;-2;+4;-4} nếu bạn đã học số âm
==> a thuộc {2;3;5}
Ta có :
\(\frac{a+3}{a-1}=\frac{a-1+1+3}{a-1}=\frac{a-1+4}{a-1}\)\(=1+\frac{4}{a-1}\)
Để \(\frac{a+3}{a-1}\)có kết quả là 1 số tự nhiên thì a + 3 chia hết cho a - 1
=> 4 chia hết cho a - 1 hay \(a-1\inƯ\left(4\right)\)
\(\Rightarrow a-1\in\left\{-4;-2;-1;1;2;4\right\}\)
Vì a là 1 số tự nhiên nên \(a\in\left\{0;2;3;5\right\}\)
Ủng hộ mk nha !!! ^_^