K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2017

vì a chia 15 dư 14 nên a+1 chia hết cho 15.

vì a chia 18 dư 17 nên a+1 chia hết cho 18

vậy a+1 chia hết cho cả 15 vaf18.

số bé nhất chia hết cho 15 và 18 laf90.

a+1=90

a=90-1

a=89

12 tháng 8 2016

số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên)
39.k+14=37.k+2.k+14 chia cho 37 dư 1
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên)
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên )
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1
2.k+14=38
2.k=38-14=24
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482

12 tháng 8 2016

Theo đề bài ta có :

â : 37 dự 1      => 3a : 37 dư 3

a : 39 dư 14    => 3a : 39 dư 3 

=> 3a + 3 chia hết cho 37 và 39

=> 3a + 3 thuộc BCNN(37 ; 39) 

Ta có :

BCNN(37 ; 39) = 1443

=> 3a + 3 = 1443

=> 3a = 1440

=> a = 480

14 tháng 12 2015

a) x chia 8;12;16 dư 2

=>x-2 chia hết cho 8;12;16

mà 8=2^3

     12=2^2x3

     16=2^4

=> BCNN(8;12;16)=2^4x3=48

=>x-2 thuộc B(48)=[48;96;144;....]

x=[50;98;146;....]

mà x nhỏ nhất có 2 chữ số =>a=50

b) ta có a chia 12 dư 11

            a chia 15 dư 14

=> a+1 chia hết cho 12 và 15

=> a+1 thuộc BC(12;15)

mà 12=2^2x3

      15=3x5

=>BCNN(12;15)=2^2X3X5=60

=> a+1 thuộc B(60)=[60;120;180;.....]

a=[59;119;179;....]

mà a nhỏ nhất =>a=59

c) x chia 50;38;25 dư 12

=> x-12 chia hết cho 50;38;25

mà 50=2x5^2

     38=2x19

     25=5^2

=>BCNN(50;38;25)=2x5^2x19=950

=>a-12 thuộc B(950)=[950;1900;2850;....]

a=[962;1912;2862;....]

mà a bé nhất =>a=962

nhớ tick cho mình đấy

 

 

 

3 tháng 9 2021

b) Theo đề bài, A : 12,15 (dư lần lượt là 11 và 14)

Vậy (A+1) chia hết cho 12,15 

BCNN của 12,15 là:

\(\hept{\begin{cases}12=2^2\times3\\15=3\times5\end{cases}}\Rightarrow BCNN=2^2\times3\times5=60\)

Vậy a=60-1=59

   Học tốt nha ^-^

4 tháng 12 2016

a) n chia 11 dư 6, chia 17 dư 12, chia 29 dư 24 => n chia 11;17;29 đều thiếu 5

=>n+5 chia hết cho 11;17;29

Vì n nhỏ nhất =>n+5 là BCNN(11;17;29)

Vì 11;17;29 nguyên tố cùng nhau

=>n+5= BCNN(11;17;29)=11x17x29=5423

=>n=5423-5=5418

b) Gọi số tự nhiên cần tìm là x

x chia 13 dư 8, chia 19 dư 14 => x chia 13;19 đều thiếu 5

=> x+5 chia hết cho 13;19 Vì x nhỏ nhất => x+5 là BCNN(13;19)

Vì 13;19 nguyên tố cùng nhau

=> x+5=BCNN(13;19)=13x19=247

=> x+5 thuộc B(247)={0;247;494;741;988;1235;1482;...}

Để có số tận cùng là 7 => x+5 tận cùng là 2 => x+5=1482

x=1482-5

x=1477

1 tháng 5 2015

Theo bài ra ta có:

a = 7k + 4 (k \(\in\)N)        => a + 3 = 7k + 7 chia hết cho 7

a = 14k1 + 11 (k1 \(\in\)N) => a + 3 = 14k1 + 14 chia hết cho 14

a = 49k2 + 46              => a + 3 = 49k2 + 49 chia hết cho 49

=> a + 3 \(\in\)BC(7,9,49)

Mà a nhỏ nhất nên a + 3 nhỏ nhất 

=> a + 3 = BCNN(7,9,49) = 441

=> a = 441 - 3 = 438

28 tháng 1 2016

438