Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lấy 2a chia 5 dư 1 chia 7 dư 1
=> 2a + 1 chia hết cho 5 và 7
=> 2a+1 thuộc BCNN(5;7)
Ta có: a chia cho 2 dư 1 => a - 1 ⋮2
a chia cho 3 dư 1 => a - 1 ⋮3
=> a - 1 ⋮6 => a -1 + 6.2 ⋮ 6 => a +11 ⋮ 6 (1)
Ta có: a chia 5 dư 4 => a - 4 ⋮5 => a - 4 + 5.3 ⋮5 => a + 11 ⋮5 (2)
Ta có: a chia 7 dư 3 => a - 3 ⋮7 => a - 3 + 7.2 ⋮7 => a + 11 ⋮7 (3)
Từ (1) ; (2) ; (3) => a +11 ∈∈BC ( 6; 5; 7 )
Có: BCNN ( 6; 5; 7 ) = 210
=> a + 11 ∈ BC ( 6; 5; 7 )
=> a ∈ { 199; 409 ;....}
Mà a là số tự nhiên nhỏ nhất nên a = 199.
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
Theo bài ra ta có :
+) a : 3 dư 2
=> 2a : 3 dư 1 ( vì 2 . 2 = 4 : 3 dư 1 _ giải thích ko cần viết thêm )
=> 2a - 1 chia hết cho 3(1)
+) a : 5 dư 3
=> 2a : 5 dư 1
=> 2a - 1 chia hết cho 5 (2)
+) a : 7 dư 4
=> 2a : 7 dư 1
=> 2a - 1 chia hết cho 7 (3)
Từ (1) (2) (3) :
=> 2a - 1 € BC( 3 , 5 , 7 )
BCNN ( 3 ,5 , 7 ) = 3. 5 . 7 = 105
BC ( 3 , 5 , 7 ) = B(105) = { 0 , 105 , 210 , 315 , ...}
=> 2a - 1 € { 0 , 105 , 210 , 315 , ... }
=> a € { 1 , 53 , 211/2 , 158 ,...}
Mà a là nhỏ nhất
=> a = 53
Vậy a = 53
P/S : _" Hoq chắc ...
vì a là số nhỏ nhất :5 dư 3 nên a=8.mà a :7 dư 4 nên a=18.thay vào ta được 18:5=3(dư3),18:7=2(dư4)