Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 3,4,5 đều dư 1và chia cho 7 thì không dư
Gọi số đó là x
Ta có: x - 1 ∈ BC(3; 4; 5) = {0; 60; 120; 180; 240; 300; ...}
=> x ∈ {1; 61; 121; 181; 241; 301 ...}
Vì x chia hết cho 7 => x = 301
b) Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1,chia cho 5 dư 1,chia cho 7 dư 3,chia hết cho 9
Ta có: a chia 2 dư 1
a chia 5 dư 1
a chia 7 dư 3
a chia hết cho 9
=> a chia hết cho 3; 6; 9; 10
Ta có: 2 + 1 = 3
6 + 1 = 6
7 + 3 = 10
=> a nhỏ nhất
=> a thuộc BCNN(3; 6; 9; 10)
Ta có: 3 = 3
6 = 2 . 3
9 = 3^2
10 = 2 . 5
=> BCNN(3; 6; 9; 10) = 3^2 . 2 . 5 = 90
=> a = 90
ko trả lời linh tinh trên diễn đàn nếu trả lời linh tinh sẽ bị olm trừ điểm đấy
a, Số đó là :
( 4 x 5 x 6 ) + 1 = 121
Số đó là :
( 4 x 5 x 6 ) - 1 = 119
1.Tìm số tự nhiên nhỏ nhất khác 0 mà chia hết cho cả 2,3,4,5 và 6 là số 60
Nếu số thứ ba là \(1\)phần thì số thứ hai là \(3\)phần cộng thêm \(1\), số thứ nhất là \(9\)phần cộng thêm \(4\).
Tổng số phần bằng nhau là:
\(1+3+9=13\)(phần)
Giá trị mỗi phần là:
\(\left(2904-1-4\right)\div13=223\)
Số thứ nhất là:
\(223\times9+4=2011\)
mk nghĩ bài này của lớp 6 mới đúng :
tìm số tự nhiên a nhỏ nhất sao cho a chia cho 3,5,7 thì được số dư theo thứ tự là 2,3,4
Giải
a = 3m + 2 ( m € N ) => 2a = 6m + 4 chia 3 dư 1
a = 5n + 3 ( n € N ) => 2a = 10n + 6 chia 5 dư 1
a = 7p + 4 ( p € N ) => 2a = 14p + 8 chia 7 dư 1
Do đó 2a - 1 € BC ( 3,5,7)
Để a nhỏ nhất thì 2a - 1 là BCNN ( 3,5,7 )
BCNN ( 3,5,7) = 105
Mà 2a-1 = BCNN ( 3,5,7 )
=> 2a-1 = 105
2a = 105 + 1
2a = 106
a = 106 : 2
a = 53
Vậy a = 53
~~~hok tốt~~~