Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài, ta được:
\(a=4t+3\Rightarrow a+1=4t+4⋮4\)
\(a=5k+4\Rightarrow a+1=5k+5⋮5\)
\(a=6k+5\Rightarrow a+1=6k+6⋮6\)
Từ đó: \(a+1\in BC\left(4;5;6\right)\)
\(BCNN\left(4;5;6\right)=2^2.3.5=60\)
\(\Rightarrow a+1\in B\left(60\right)=\left\{60;120;180;240;300;360;420;...\right\}\left(a+1>0\right)\)
\(\Rightarrow a\in\left\{59;119;179;239;299;359;419;...\right\}\)
Mà 200 < a < 400 nên \(a\in\left\{239;299;359\right\}\)
Ta có: 120=23*3*5
86=2*43
=>BCNN(120;86)=23*3*5*43=5160
Vậy số cần tìm là 5160
Theo mình nghĩ :
Gọi số cần tìm là x có:
x đó chia cho 6,7,8 được số dư lần lượt là 4,5,6
=> x chia hết cho 10;12;14và x chia hết cho 9 với lại x nhỏ nhất
=> x thuộc BCNN (10;12;14;9)
10 = 2.5 ; 12 = 3.2^2; 14 = 2.7; 9 = 32
BCNN (10;12;14;9) = 22. 32 . 5 . 7
BCNN (10;12;14;9) = 1260
Vậy x = 1260
Có: \(a⋮120;a⋮86\)
\(\Rightarrow a\in BC\left(120,86\right)\) mà \(a\) nhỏ nhất khác 0
\(\Rightarrow a=BCNN\left(120,86\right)\)
Khi đó:
\(120=2^3\cdot3\cdot5\\86=2\cdot43\\\Rightarrow BCNN(120,86)=2^3\cdot3\cdot5\cdot43=5160\)
hay \(a=5160\left(tm\right)\)
\(120=2^3\cdot3\cdot5;86=2\cdot43\)
=>\(BCNN\left(120;86\right)=2^3\cdot3\cdot5\cdot43=5160\)
a chia hết cho 120 và 86
=>\(a\in BC\left(120;86\right)\)
mà a nhỏ nhất
nên a=BCNN(120;86)
=>a=5160