Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12 = 3*2*2
3 là số nguyên tố nhỏ nhất
=> Vậy số cần tìm là : 23-1 * 32-1 *52-1=4*3*5=60
=> a = 60
Chú ý : * là dấu nhân
Cách xác định số lượng các uớc của một số.
Để tính số lượng các uớc của số m ( m > 1 ), phân tích của số m ra thừa số nguyên tố
Nếu m = ax thì m có x + 1 ước
Nếu m = ax . by thì m có ( x + 1 ) ( y + 1 ) uớc
Số tự nhiên nhỏ nhất có đúng 15 ước là 324
Thử: 324 = 2^2.3^4 nên số 324 có (2+1)(4+1)= 15 (ước)
Giả sử n có phân tích ra thừa số nguyên tố \(n=p^{\alpha_1}_1p^{\alpha_2}_2....p^{\alpha_n}_n\) thì số ước của n là: \(\left(1+\alpha_1\right)\left(1+\alpha_2\right)...\left(1+\alpha_n\right)\).
Để số tự nhiên phải tìm là nhỏ nhất thì các số nguyên tố \(p_1,p_2,...,p_n\) được chọn phải nhỏ nhất.
Vậy số cần tìm phải có một ước nguyên tố \(p=2\).
\(12=2^2.3\). Suy ra \(\left(1+\alpha_1\right)\left(1+\alpha_2\right)...\left(1+\alpha_n\right)=12\) .Từ đó suy ra số mũ của \(p=2\)phải là 11, 2, 3, 5. ( Số mũ của p cộng 1 là ước của 12).
Nếu số mũ của 2 bằng 11. Suy ra \(n=2^{11}=2048\).
Nếu số mũ của 2 bằng 2, ta có hai trường hợp:
- Ta chọn ước nguyên tố tiếp theo của n là 3 và \(n=2^2.3^3=108\).
- Ta chọn ước nguyên tố tiếp theo của n là 3 và 5 và \(n=2^2.3.5=60\).
Nếu số mũ của 2 bằng 3, ta có hai trường hợp:
-Ta chọn ước nguyên tố tiếp theo của n là 3 và \(n=2^3.3^2=72\).
- Ta chọn hai ước nguyên tố tiếp theo của n là 3, 5 và \(n=2^3.3.5=120\).
Nếu số mũ của 2 bằng 5, ta chọn ước nguyên tố tiếp theo của n là 3 và \(n=2^5.3=96\).
Vậy cố cần tìm là 60.
Theo bài ra , ta có :
12=2^2.3
Ta thấy ; 3 số nguyên tố nhỏ nhất là : 2 , 3 , 5
=> A = 2^3-1 . 3^2-1 . 5^2-1= 4 . 3 . 5 = 60
Vậy số tự nhiên A nhỏ nhất có đúng 12 ước là số 60