Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a = 3m+2 ( m thuộc N ) => 2a= 6m+4, chia 3 dư 1
a= 5n+3 ( n thuộc N ) => 2a = 10n+6, chia 5 dư 1
a= 7p+4 ( p thuộc N ) => 2a = 14p+8, chia 7 dư 1
Do đó 2a - 1 thuộc BC ( 3,5,7 )
Để a nhỏ nhất thì 2a-1 là BCNN( 3,5,7 )
BCNN(3,5,7) = 105
Mà 2a-1 = BCNN(3,5,7)
=> 2a-1 = 105
2a = 105+1
2a=106
a=106:2
a=53
Vậy a = 53
a chia 3, 5, 7 lần lượt dư 2, 4, 6 => a + 1 chia hết 3, 5, 7.
Mà a nhỏ nhất => a + 1 nhỏ nhất.
Suy ra a + 1 = BCNN(3,5,7) = 105
Vậy a = 104
Câu trả lời được Online Math lựa chọn
theo bài ra ta có:
a+1 chia hết cho 3
a+1 chia hết cho 5
a+1 chia hết cho 7
từ các điều trên⇒⇒ a+1chia hết cho 3;5;7
⇒⇒ a +1 ∈∈ BC(3;5;7)
Vì (3;5;7)=1
⇒⇒ BCNN|(3;5;7)=3.5.7=105
⇒⇒BC(3;5;7)=B(105)={0;105;210;.....}{0;105;210;.....}
Mà a nhỏ nhất khác 0⇒a+1⇒a+1 nhỏ nhất khác 0
⇒a+1⇒a+1 =105
a = 105 -1
a = 104
Vậy a=104
Vì a:3 dư 2 => a+1 chia hết cho 3=> a+1+3 chia hết cho 3=>a+1+3.7 chia hết cho 3=>a+52 chia hết cho 3
Vì a:5 dư 3 => a+2 chia hết cho 5=> a+2+5 chia hết cho 5=>a+2+5.7 chia hết cho 5=>a+52 chia hết cho 5
Vì a:7 dư 4 => a+3 chia hết cho 7=> a+3+7 chia hết cho 7=>a+3+7.7 chia hết cho 5=>a+52 chia hết cho 7
=>a+52 là BC của 3;5;7
Vì 3;5;7 là đôi một số nguyên tố nên BC của 3;5;7 = 3.5.7=105
=>a=52=105
a=105-52
a= 53
Vậy số TN nhỏ nhất cần tìm là 53.