Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có :
\(\frac{5a}{12}\) là số tự nhiên ,mà ( 5;12 ) = 1 => a chia hết cho 12
\(\frac{10a}{21}\) là số tự nhiên , mà ( 10;21 ) = 1 => a chia hết cho 21
Mà a nhỏ nhất => a thuộc BCNN(12; 21) = 84
Vậy a = 84
Vì khi nhân với \(\frac{5}{12};\frac{10}{21}\)đều được thương là số tự nhiên nên số tự nhiên \(a\)chia hết cho \(12\)và \(21\)
\(\Rightarrow a\)là \(BCNN\left(12;21\right)\)
Có :
\(12=2^2.3\)
\(21=3.7\)
\(\Rightarrow BCNN\left(12;21\right)=2^2.3.7=84\)
Vậy \(a=84.\)
Gọi số cần tìm là a theo đề bài ta có :
\(\frac{5a}{12}=\frac{10a}{24}\inℕ^∗\)\(\Rightarrow\)\(10a⋮24\)
\(\frac{10a}{21}\inℕ^∗\)\(\Rightarrow\)\(10a⋮21\)
Từ (1) và (2) suy ra :
\(10a⋮21;10a⋮24\)
\(\Rightarrow\)\(10a\in BC\left(21;24\right)=\left\{0;168;336;504;672;840;...\right\}\)
\(\Rightarrow\)\(a\in\left\{0;\frac{168}{10};\frac{336}{10};\frac{504}{10};\frac{672}{10};84;...\right\}\)
Mà a là số tự nhiên khác 0, a nhỏ nhất nên : \(a=84\)
Vậy số cần tìm là \(84\)
Cầu 1:
\(\frac{a+b}{a^2+ab+b^2}=\frac{49}{1801}\)
Biến đổi ta có: \(\frac{a+b}{\left(a+b\right)^2-ab}=\frac{49}{1801}\)
Cứ cho a+b=49 thì
Thế a+b vào đẳng thức trên đc:
\(\frac{a+b}{2401-ab}=\frac{49}{1801}\)
Từ đó: ta có
\(\hept{\begin{cases}a+b=49\\ab=600\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=24\\b=25\end{cases}}\)hoặc \(\hept{\begin{cases}b=24\\a=25\end{cases}}\)
Vậy phân số cần tìm là ........... (có 2 p/s nha)
Câu 2 Dễ mà ~~~~~~~
Làm biếng :3
Ta có:
\(\frac{12}{a}=\frac{12}{a+2}+1\)
\(\frac{12}{a}-\frac{12}{a+2}=1\)
\(\frac{12\times\left(a+2\right)}{a\times\left(a+2\right)}-\frac{12\times a}{a\times\left(a+2\right)}=1\)
\(\frac{12\times\left(a+2\right)-12\times a}{a\times\left(a+2\right)}=1\)
\(\frac{12\times a+24-12\times a}{a\times\left(a+2\right)}=1\)
\(\frac{24}{a\times\left(a+2\right)}=1\)
\(a\times\left(a+2\right)=24\) ( vì phân số bằng 1 khi tử số và mẫu số bằng nhau )
Vì \(24\) là số chẵn nên \(a\) và \(a+2\) là hai số chẵn liên tiếp
Ta có: \(4\times6=24\) nên \(\Rightarrow a=4\)