Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LEGGO chắc ghi nhầm ở chỗ \(4a^2+8a+4\) => sửa lại \(4a^2+8a+5\)
Không tồn tại số $a$ thỏa mãn điều kiện đề bài vì với mọi \(a\in\mathbb{N}\Rightarrow 4a^2+8a+4>2\) và \(4a^2+8a+4\vdots 2\) nên \(4a^2+8a+4\) không thể là số nguyên tố.
Lời giải:
Để ý rằng 4n2+16n+7=(2n+1)(2n+7)4n2+16n+7=(2n+1)(2n+7)
Vì n∈N⇒2n+1,2n+7>1n∈N⇒2n+1,2n+7>1
Do đó, 4n2+16n+7∉P4n2+16n+7∉P với mọi số tự nhiên nn
Vậy không tìm được số nn thỏa mãn điều kiện đề bài
K MK NHÁ
#HC TỐT#
#TTV#
Đặt a+1=p suy ra:4a2+8a+5=4p2+1
6a2+12a+7=6p2+1
Do p là số nguyên tố nên thử chọn p
p=2 loại
p=3 loại
Ta được p=5
với p>5 thì p ko chia hết cho 5
suy ra p có dạng 5k+1, 5k+2,5k+3,5k+4(k trong N)
với 5k+1=p thì có : 4p2+1=100k2+40k+5 chia hết cho 5 loại
với 5k+2=p thì có : 6p2+1=150k2+120k+25 chia hết cho 5 loại
với p=5k+3 và 5k+4 tương tự
Suy ra p=5
Vậy a+1=p,a=4
a\(\in\)N\(\Rightarrow\)a+1\(\in\)N
4a2+8a+5=4(a+1)2+1 \(\in\)N nếu a\(\in\)N
6a2+12a+7=6(a+1)2+1 \(\in\)N nếu a\(\in\)N
Vậy \(\forall\)a\(\in\)N đều t/m
\(A=n^3+n^2-n+2=\left(n+2\right)\left(n^2-n+1\right)\)là số nguyên tố suy ra
\(\orbr{\begin{cases}n+2=1\\n^2-n+1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=-1\\n=1;n=0\end{cases}}\)
Thử lại đều thỏa mãn.
tao chiu