Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lời giải:
Gọi số cần tìm là $\overline{ab}$. Điều kiện:.......
Theo bài ra ta có:
$a+2b=12(1)$
$\overline{a0b}-\overline{ab}=180$
$\Leftrightarrow 100a+b-(10a+b)=180$
$\Leftrightarrow 90a=180$
$\Leftrightarrow a=2(2)$
Từ $(1); (2)\Rightarrow b=5$
Vậy số cần tìm là $25$

Gọi số cần tìm là ab ( có gạch ngang trên đầu)
Theo bài ra ta có: a - b =5 (1)
nếu viết xen chữ số 0 vào giữa số hàng chục và hàng đơn vị thì số mới là: a0b ( có gạch ngang trên đầu)
=> a0b - ab = 630
=> 100a + 0 + b - 10a - b = 630
=> 90a = 630
=> a = 7
Thay a = 7 vào (1) ta đc b=2
Vậy số cần tìm là 72
học tốt
Gọi số cần tìm là ab, ta có:
ab + 630 = a0b
a x 10 + b + 630 = a x 100 + b
b + 630 - b = a x 100 - a x 10
630 = a x 90 \(\Rightarrow a=7\)
\(\Rightarrow b=7-5=2\)
Vậy số cần tìm là 72.

Gpoij số cần tìm là : ab
Khi đó: b gấp đôi a
Ta có: ab + 370 = a1b
<=> 10a + b + 370 = 100a + 10 + b
=> b - b + 370 - 10 = 100a - 10a
=> 360 = 90a
=> a = 360 : 90
=> a = 4
Vì đầu bài bài cho b gấp đổi a
=> b = 4 x 2
=> b = 8
Vậy số ban đầu là 48

gọi số có hai chữ số đó là \(\overline{ab}\) ta có
\(\hept{\begin{cases}a-b=2\\\overline{a0b}-\overline{ab}=630\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=2\\100a+b-10a-b=630\end{cases}\Leftrightarrow}\hept{\begin{cases}a=7\\b=5\end{cases}}}\)
Vậy số đó là\(75\)

Gọi số cần tìm có dạng là \(\overline{ab}\)
2 lần chữ số hàng chục bé hơn chữ số hàng đơn vị là 1 nên b-2a=1
Nếu viết số đó theo thứ tự ngược lại thì được một số mới với tổng của số mới và số ban đầu là 143
=>\(\overline{ab}+\overline{ba}=143\)
=>11a+11b=143
=>a+b=13
Do đó, ta có hệ phương trình:
\(\left\{{}\begin{matrix}-2a+b=1\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-12\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=9\end{matrix}\right.\)

Gọi số đã cho là \(\overline{xy}\) với x,y là các chữ số từ 0 tới 9, x khác 0
Do hai lần chữ số hàng chục nhỏ hơn chữ số hàng đơn vị là 5 đơn vị nên:
\(y-2x=5\) (1)
Do đổi chỗ các chữ số thì được số mới lớn hơn số cũ 63 đơn vị nên ta có:
\(\overline{yx}-\overline{xy}=63\Rightarrow\left(10y+x\right)-\left(10x+y\right)=63\)
\(\Rightarrow y-x=7\) (2)
Từ (1) và (2) ta có hệ:
\(\begin{cases}y-2x=5\\ y-x=7\end{cases}\) \(\Rightarrow\begin{cases}x=2\\ y=9\end{cases}\)
Vậy số đó là 29
Gọi số cần tìm có dạng là \(\overline{ab}\)
(Điều kiện: a,b∈N*; 0<a<=9; 0<=b<=9)
Hai lần chữ số hàng chục nhỏ hơn chữ số hàng đơn vị là 5 đơn vị nên b-2a=5
=>b=2a+5
Nếu đổi chỗ hai chữ số của số ban đầu thì số mới lớn hơn số ban đầu là 63 đơn vị nên ta có: \(\overline{ba}-\overline{ab}=63\)
=>10b+a-10a-b=63
=>9b-9a=63
=>b-a=7
=>2a+5-a=7
=>a+5=7
=>a=7-5=2(nhận)
\(b=2a+5=2\cdot2+5=9\) (nhận)
vậy: Số cần tìm là 29

Gọi chữ số hàng chục của số cần tìm là a, chữ số hàng đơn vị của số cần tìm là b (a thuộc N*, b thuộc n)
Khi đó, số cần tìm có dạng: 10a+b
Nếu viết thêm chữ số hạng chục vào bên phải số cần tìm thì khi đó số mới có dạng: 100a+ 10b+a=101a+10b
Mà số mới này hơn số đã cho 682 đơn vị
=>101a+10b-10a-b=682
<=>91a+9b=682 (1)
Theo đề ta có: a-b=2 <=>b=a-2(2)
Thay (2) vào (1) ta được:
91a+9 (a-2)=682
<=>100a=700
<=>a=7(thỏa điều kiện)
=> b=a-2=7-2=5 (thỏa điều kiện)
Vậy,số đã cho là 75

Gọi số cần tìm là ab(ĐK:0<a,b≤9)
Theo đề ra ta có:b-2a=2(1)
Nếu thêm 1 chữ số bằng chữ số hàng chục vào bên phải số đã cho thì số mới là aba
Ta có:aba-ab=345
\(\Leftrightarrow\)101a+10b-10a-b=345
\(\Leftrightarrow\)91a+9b=345(2)
Từ (1)(2) ta có hệ phương trình\(\begin{cases} b-2a=2 \\ 91 a+9b=345 \end{cases}\)
\(\Leftrightarrow\)\(\begin{cases} a=3\\ b=8 \end{cases}\)
Vậy số tự nhiên cần tìm là 38
Gọi số cần tìm là \(\overline{xy}\) với x;y là các chữ số từ 0 tới 9, `x \ne 0`
Do tổng chữ số hàng chục và 2 lần chữ số hàng đơn vị là 12 nên ta có:
\(x+2y=12\) (1)
Sau khi thêm chữ số 0 vào giữa ta được số mới là: \(\overline{x0y}\)
Do số mới hơn số cũ 180 đơn vị nên ta có pt:
\(\overline{x0y}-\overline{xy}=180\Leftrightarrow100x+y-\left(10x+y\right)=180\)
\(\Leftrightarrow90x=180\)
\(\Leftrightarrow x=2\)
Thay vào (1) \(\Rightarrow2+2y=12\Rightarrow y=5\)
Vậy số đó là 25