Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:a/ 1.6-Ix-0.2I=0
Có 2 trường hợp:
TH1: x-0.2=1.6
=> x=1.6+0.2=1.8
TH2: x-0.2=-1.6
=> x=-1.4
b/ Có 2 trường hợp:
TH1:x-1.5=0=>x=1.5
TH2: 2.5-x=0=> x=2.5
Bài 2: a/ Vì Ix-3.5I\(\ge0\)
=> Amax=0.5-0=0.5 khi x=3.5
b/ Vì -I1.4-xI \(\le0\)
Nên Bmax=0-2=-2 khi x=1.4
a/ \(\left|2x-1,6\right|-2,3=1,4\)
\(\Leftrightarrow\left|2x-1,6\right|=3,7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1,6=3,7\\2x-1,6=-3,7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=5,3\\2x=-2,1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2,65\\x=-1,05\end{matrix}\right.\)
Vậy ....
b/ \(5,4-\left|3x-1,2\right|=5,5\)
\(\Leftrightarrow\left|3x-1,2\right|=-0,1\)
Mà \(\left|3x-1,2\right|\ge0\)
\(\Leftrightarrow x\in\varnothing\)
c/ \(\left|x+1,3\right|+\left|x+2,4\right|=4x\)
Mà \(\left\{{}\begin{matrix}\left|x+1,3\right|\ge0\\\left|x+2,4\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow4x\ge0\)
\(\Leftrightarrow x+1,3+x+2,4=4x\)
\(\Leftrightarrow2x+3,7=4x\)
\(\Leftrightarrow3,7=4x-2x\)
\(\Leftrightarrow2x=3,7\)
\(\Leftrightarrow x=1,85\)
Vậy ....
d/ \(\left|x-1,2\right|+\left|2,5-x\right|=0\)
Mà \(\left\{{}\begin{matrix}\left|x-1,2\right|\ge0\\\left|2,5-x\right|\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x-1,2\right|=0\\\left|2,5-x\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1,2=0\\2,5-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1,2\\x=2,5\end{matrix}\right.\) (loại)
Vậy ..
a, \(\left|2x-1,6\right|-2,3=1,4\)
\(\Rightarrow\left|2x-1,6\right|=3,7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1,6=3,7\\2x-1,6=-3,7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2,65\\x=-1,05\end{matrix}\right.\)
b,\(5,4-\left|3x-1,2\right|=5,5\)
\(\Rightarrow\left|3x-1,2\right|=-0,1\) (vô lí)
Vì \(\left|x\right|\ge0\) mà \(\left|3x-1,2\right|< 0\)
Vậy, không có giá trị của x thỏa mãn.
c, \(\left|x+1,3\right|+\left|x+2,4\right|=4x\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+1,3\right|\ge0\\\left|x+2,4\right|\ge0\end{matrix}\right.\Leftrightarrow4x\ge0\)
\(\Leftrightarrow x+1,3+x+2,4=4x\)
\(\Leftrightarrow x+x+1,3+2,4=4x\)
\(\Leftrightarrow2x+3,7=4x\)
\(\Leftrightarrow2x-4x=-3,7\)
\(\Leftrightarrow-2x=-3,7\)
\(\Leftrightarrow x=\dfrac{3,7}{2}\)
d, \(\left|x-1,2\right|+\left|2,5-x\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-1,2\right|\ge0\\\left|2,5-x\right|\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x-1,2\right|=0\\\left|2,5-x\right|=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1,2=0\\2,5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1,2\\x=2,5\end{matrix}\right.\)
1,
a, \(\left(x-\dfrac{1}{7}\right)^4=\left(x-\dfrac{1}{7}\right)^2\)
\(\Leftrightarrow\left(x-\dfrac{1}{7}\right)^4-\left(x-\dfrac{1}{7}\right)^2=0\)
\(\Leftrightarrow\left[\left(x-\dfrac{1}{7}\right)^2+x-\dfrac{1}{7}\right]\left[\left(x-\dfrac{1}{7}\right)^2-x+\dfrac{1}{7}\right]=0\)
\(\Leftrightarrow\left[x^2+\dfrac{1}{49}-\dfrac{2}{7}x+x-\dfrac{1}{7}\right]\left[x^2+\dfrac{1}{49}-\dfrac{2}{7}x-x+\dfrac{1}{7}\right]=0\)
\(\Leftrightarrow\left(x^2+\dfrac{5}{7}x-\dfrac{6}{49}\right)\left(x^2-\dfrac{9}{7}x+\dfrac{8}{49}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+\dfrac{5}{7}x-\dfrac{6}{49}=0\\x^2-\dfrac{9}{7}x+\dfrac{8}{49}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=\dfrac{8}{7}\end{matrix}\right.\)
Vậy...
b, \(\left|x+6,4\right|+\left|x+2,5\right|+\left|x+8,1\right|=4x\)
\(\Leftrightarrow x+6,4+x+2,5+x+8,1=4x\) với mọi x
\(\Leftrightarrow x+x+x-4x=-8,1-2,5-6,4\)
\(\Leftrightarrow-x=-17\)
\(\Leftrightarrow x=17\)
Vậy...
a) Vì \(\left|2,5-x\right|=1,3\Rightarrow\left\{{}\begin{matrix}2,5-x=1,3\\2,5-x=-1,3\end{matrix}\right.\left\{{}\begin{matrix}x=1,2\\x=3,8\end{matrix}\right.\)
b) \(1,6-\left|x-0,2\right|=0\)
\(\Rightarrow\left|x-0,2\right|=1,6\)
Vì \(\left|x-0,2\right|=1,6\Rightarrow\left\{{}\begin{matrix}x-0,2=1,6\\x-0,2=-1,6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1,8\\x=-1,4\end{matrix}\right.\)
c) Vì \(\left|x-1,5\right|\ge0;\left|2,5-x\right|\ge0\)
Mà \(\left|x-1,5\right|+\left|2,5-x\right|=0\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\)
Vô lý vì \(x\) không thể nhận đồng thời 2 giá trị \(\Rightarrow x\) không có giá trị thỏa mãn đề bài
a. Vì |2,5 – x| = 1,3 nên 2,5 – x =1,3
=> x = 2,5 – 1,3 => x = 1,2
Hoặc 2,5 – x = -1,3 => x = 2,5 – ( -1,3)
=> x = 2,5 + 1,3 => x = 3,8
Vậy x = 1,2 hoặc x = 3,8
b. 1,6 - | x – 0,2| = 0 => |x – 0,2 | =1,6 nên x – 0,2 – 1,6
=> x = 1,6 + 0,2 => x = 1,8
Hoặc x – 0,2 = -1,6 => x= -1,6 + 0,2 => x = -1,4
Vậy x = 1,8 hoặc x = -1,4
c. |x – 1,5 | + | 2,5 – x | = 0 nên |x – 1,5| ≥ 0 ; |2,5 – x| ≥ 0
Suy ra: x – 1,5 = 0; 2,5 – x = 0 => x= 1,5 và x = 2,5
Điều này không đồng thời xảy ra. Vậy không có giá trị nào của x thoả mãn bài toán.
a) \(\left|2,5-x\right|-1,3=0\)
th1: \(2,5-x\ge0\Leftrightarrow x\le2,5\)
\(\Rightarrow\left|2,5-x\right|-1,3=0\Leftrightarrow2,5-x-1,3=0\Leftrightarrow x=1,2\left(tmđk\right)\)
th2: \(2,5-x< 0\Leftrightarrow x>2,5\)
\(\Rightarrow\left|2,5-x\right|-1,3=0\Leftrightarrow x-2,5-1,3=0\Leftrightarrow x=3,8\left(tmđk\right)\)
vậy \(x=1,2;x=3,8\)
b) \(1,6.\left|x-0,2\right|=0\Leftrightarrow\left|x-0,2\right|=0\Leftrightarrow x-0,2=0\Leftrightarrow x=0,2\) vậy \(x=0,2\)
c) \(\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\)
th1: \(\dfrac{1}{3}-x\ge0\Leftrightarrow x\le\dfrac{1}{3}\)
\(\Rightarrow\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\Leftrightarrow\dfrac{1}{3}-x-\dfrac{3}{7}=0\Leftrightarrow x=\dfrac{-2}{21}\left(tmđk\right)\)
th2: \(\dfrac{1}{3}-x< 0\Leftrightarrow x>\dfrac{1}{3}\)
\(\Rightarrow\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\Leftrightarrow x-\dfrac{1}{3}-\dfrac{3}{7}=0\Leftrightarrow x=\dfrac{16}{21}\left(tmđk\right)\)
vậy \(x=\dfrac{-2}{21};x=\dfrac{16}{21}\)
d) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
th1: \(x+\dfrac{4}{15}\ge0\Leftrightarrow x\ge\dfrac{-4}{15}\)
\(\Rightarrow\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\Leftrightarrow x+\dfrac{4}{15}-3,75=-2,15\)
\(\Leftrightarrow x=\dfrac{4}{3}\left(tmđk\right)\)
th2: \(x+\dfrac{4}{15}< 0\Leftrightarrow x< \dfrac{-4}{15}\)
\(\Rightarrow\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\Leftrightarrow-x-\dfrac{4}{15}-3,75=-2,15\)
\(\Leftrightarrow x=\dfrac{-28}{15}\left(tmđk\right)\)
vậy \(x=\dfrac{4}{3};x=\dfrac{-28}{15}\)
e) ta có : \(\left|x-1,5\right|\ge0\forall x\) và \(\left|2,5-x\right|\ge0\forall x\)
\(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|=0\Leftrightarrow\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\) 2 giá trị này khác nhau \(\Rightarrow\) phương trình vô nghiệm
x.3+12=4.x
trừ mỗi vế cho x.3, ta có:
12=1x
Vậy x = 12
câu này vào toán lopws 5 mới đúng chứ