Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow A=\left(x^2-32x+240\right)^2+\left(x-12\right)^2+1870\)
\(\Leftrightarrow A\ge1870\)
\(\Rightarrow A_{min}=1870\) khi \(x^2-32x+240=0\) và \(x-12=0\)
\(\Leftrightarrow x=12\)
\(S=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)
\(=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)
\(\ge\left(x+y\right)^2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{4\left(xy\right)}{2xy}\)
\(\ge\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}+2=6\)
Dấu "=" xảy ra <=> x = y
S đạt giá trị nhỏ nhất bằng 6 tại x = y.
Đặt \(t=x^2+\left(3-x\right)^2\Rightarrow t\ge5\)
Mặt khác: \(t=x^2+\left(3-x\right)^2=9-2x\left(3-x\right)\Rightarrow x\left(3-x\right)=\frac{9-t}{2}\)
Ta có: \(P=\left[x^2+\left(3-x\right)^2\right]^2+4x^2\left(3-x\right)^2=t^2+4\left(\frac{9-t}{2}\right)^2\)
\(=2t^2-18t+81=2\left(t-\frac{9}{2}\right)^2+\frac{81}{2}\)
Mà \(t\ge5\Rightarrow t-\frac{9}{2}\ge\frac{1}{2}\Rightarrow P\ge2.\left(\frac{1}{2}\right)^2+\frac{81}{2}=41\)
Đẳng thức xảy ra khi \(t=5\Leftrightarrow x^2+\left(3-x\right)^2=5\Leftrightarrow x^2-3x+2\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy \(MinP=41\), đạt được khi \(x\in\left\{1;2\right\}\)
Đặt \(x^2+\left(3-x\right)^2=a\ge5\)
Ta có:
\(x\left(3-x\right)=-\frac{1}{2}\left(2x^2-6x\right)\)
\(=-\frac{1}{2}\left(x^2-6x+9+x^2-9\right)\)
\(=-\frac{1}{2}\left(x^2+\left(3-x\right)^2-9\right)=-\frac{1}{2}\left(a-9\right)\)
Áp dụng ta có:
\(P=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2=\left(x^2+\left(3-x\right)^2\right)^2+4x^2\left(3-x\right)^2\)
\(=a^2+\left(a-9\right)^2\)
\(=2a^2-18a+81=\left(2a^2-20a+50\right)+2a+31\)
\(=2\left(a-5\right)^2+2a+31\ge0+2.5+31=41\)
\(S^2=\left(\left|x\right|+\left|y\right|+\left|x\right|\right)^2=x^2+y^2+z^2+2\left(\left|x\right|\left|y\right|+\left|y\right|\left|z\right|+\left|z\right|\left|x\right|\right)\)
\(S^2=x^2+y^2+z^2+\left|x\right|\left(\left|y\right|+\left|z\right|\right)+\left|y\right|\left(\left|z\right|+\left|x\right|\right)+\left|z\right|\left(\left|x\right|+\left|y\right|\right)\)
Áp dụng BĐT chứa dấu GTTĐ ta có:
\(\left|y\right|+\left|z\right|\ge\left|y+z\right|=\left|-x\right|=\left|x\right|\Rightarrow\left|x\right|\left(\left|y\right|+\left|z\right|\right)\ge z^2\)
Cmtt:\(\left|y\right|\left(\left|z\right|+\left|x\right|\right)\ge y^2,\left|z\right|\left(\left|x\right|+\left|y\right|\right)\ge z^2\)
Vì vậy \(S^2\ge2\left(x^2+y^2+z^2\right)\Rightarrow S^2\ge16\Rightarrow S\ge4\)
Dấu "=" xảy ra khi (x;y;z)=(2;-2;0) và hoán vị của nó, ta có S=4
Bài 1 : \(A=\frac{2016}{x^2-2x+2017}\) đạt GTLN khi \(x^2-2x+2017\) đạt GTNN .
\(x^2-2x+2017=x^2-2x+1+2016=\left(x-1\right)^2+2016\Rightarrow GTNN\) của \(x^2-2x+2017\) là \(2016\)
\(\Rightarrow GTLN\) của \(A\) là : \(\frac{2016}{2016}=1\)
Bài 2 :
a ) Đặt \(A=\frac{2}{6x-9x^2-21}.A\) đạt \(GTNN\) Khi \(\frac{1}{A}\) đạt \(GTLN\).
Ta có : \(\frac{1}{A}=\frac{-9x^2+6x-21}{20}=-\frac{9}{20}\left(x-\frac{1}{3}\right)^2-1\le-1\)
Vậy \(Max\left(\frac{1}{A}\right)=-1\Leftrightarrow x=\frac{1}{3}\)
\(\Rightarrow Min_A=-1\Rightarrow x=\frac{1}{3}\)
b ) Đặt \(B=\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)
Ta có : \(B=\left[\left(x-1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-5\right)\right]=\left(x^2-7x+6\right)\left(x^2-7x+10\right)\)
Đặt \(y=x^2-7x+8\Rightarrow B=\left(y+2\right)\left(y-2\right)=y^2-4\ge-4\)
\(Min_B=-4\) khi và chỉ khi \(x^2-7x+8=0\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{array}\right.\)